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1. INTRODUCTION 

  
Orthogonal functions like Walsh (Chen and Hsiao, 
1965; Rao, 1983), block pulse (Krueger and Knoop, 
1990; Rao and Rao, 1979), Laguerre (Hwang and 
Shin, 1981), Legendre (Chang and Wang, 1984) play 
an important role to establish algebraic methods for 
the solution of problems described by differential 
equations, such as analysis of linear time invariant or 
time varying systems, model reduction, optimal 
control and system identification. 
 
Time domain techniques for solving differential 
equations have received increased attention in the 
literature in the comparison to frequency domain 
methods. Wavelet transform (Burrus, et al., 1998) as 
a new technique for time domain simulations based 
on the time-frequency localization, or multiresolution 
property, has been developed into a more and more 
complete system and found great success in practical 
engineering problems. Recently, some of the 
attempts are made in solving surface integral 
equations, improving the finite difference time 
domain method, solving linear differential equations 
and nonlinear partial differential equations and 
modelling nonlinear semiconductor devices (Ohkita 
and Kobayashi, 1986; Razzaghi and Ordokhani, 
2002). Recently, in (Karimi, et al., 2004a; Karimi, et 

al. 2004b) a computational method based on Haar 
wavelet in time-domain for solving optimal control 
and parameter estimation of the linear time invariant 
systems for any finite time interval was proposed. 
In the sequel of the work by (Karimi, et al., 2004b), 
we extend the computational method based on Haar 
wavelet to the optimal control problem of linear 
singularly perturbed systems. Singularly perturbed 
systems often occur naturally because of the presence 
of small parasitic parameters multiplying the time 
derivatives of some of the system states. Singularly 
perturbed control systems have been intensively 
studied for the past three decades and a popular 
approach adopted to handle these systems is based on 
the so-called reduced technique; see (Kokotovic, et 
al., 1986). The composite design based on separate 
designs for slow and fast subsystems has been 
systematically reviewed by (Saksena, et al., 1984). In 
this paper, by utilizing the properties of Haar 
functions and the integral operation matrix and 
Kronecker product, we can find the approximated 
optimal slow and fast dynamics and approximated 
optimal composite control with respect to a quadratic 
cost function by solving only the linear algebraic 
equations instead of solving two Riccati differential 
equations of the slow and fast subsystems. We 
demonstrate the applicability of the proposed 
technique in a simple example. 

     



 
2. COMPOSITE CONTROL FOR SINGULARLY 

PERTURBED SYSTEMS 
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then the slow subsystem (4) and the cost function (7) 
are rewritten as follows:  

In this paper continuous-time singularly perturbed 
linear system is given by the state-space 
representation 
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ε  is scalar and real. The quadratic cost function to 
be minimized is given by 

 
2.2. Fast subsystem 
 
Next we consider the fast subsystem with the 
assumption that the slow variables are constant in the 
boundary layer. Redefining the fast variables as 

and the fast controls , then the 
fast subsystem is formulated as follows: 
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where  and the matrices 

 and  are positive semi-definite 
and positive definite matrices, respectively. 
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with the initial condition . The 
performance criterion for the fast subsystem is given 
by 
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Using the singular perturbation method (Kokotovic, 
et al., 1986), we establish slow and fast subsystems, 
and we will derive slow and fast cost functions for 
the each subsystem. A composite control for the 
singularly perturbed system is obtained as a 
combination of optimal control laws of the slow and 
fast subsystems; i.e. 
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The near-optimality of the composite control law is 
stated in the following lemma. 
Lemma 1 (Kokotovic, et al., 1986). The composite 
control law of the system (1) with respect to the 
quadratic cost function (2) is suboptimal in the sense fsc uuuu +==:

su

                                                          (3) 
where  and are optimal controls for the slow 
and fast subsystems, respectively. 
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First we consider the optimal control for the slow 
subsystem. Let 0=ε  and assume that  is non-
singular, then we obtain the slow subsystem as  
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where and  and  are vectors in 
and ℜ respectively, and u  represents the 

control input vector. And the coefficient matrices 
,  and  are given by 
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3.  HAAR WAVELETS 
 
The oldest and most basic of the wavelet systems is 
named Haar wavelet that is a group of square waves 
with magnitude of 1±  in certain intervals and zeros 
elsewhere (Haar, 1910), in other words, 
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Replacing  with  yields the 
following quadratic cost function for the slow 
subsystem 
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where 

and the normalized scaling function is also defined as 
1)( =tφ  for 10 <≤ t  and zeros elsewhere. We can 

easily see that the (.)φ  and (.)ψ  are compactly 
supported, they give a local description, at different 
scales j , of the considered function. The wavelet 
series representation of the one-dimensional function 

 in terms of an orthonormal basis in the interval )(ty
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4.  SOLUTION OF SLOW AND FAST 

SUBSYSTEMS 
where  for  and we write  
for and  and also defined . 
Since, it is not realistic to use an infinite number of 
wavelets to represent the function  and if  is 
piecewise constant by itself, or maybe approximated 
as piecewise constant during each subinterval, then 
(2) will be terminated at finite terms and we consider 
the following wavelet representation of the function 

, namely  as follows: 
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Since for finding solution of slow and fast 
subsystems we use Haar wavelets defined on the 
interval [ ]1,0 , we have to rescale the finite time 
interval; this can be done by considering the variable 
σ with . In the sequel, we present an 
algebraic method to calculate solutions of the slow 
and fast subsystems approximately.  
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4.1.  Solution of slow subsystem 
 
First we focus on solving the slow subsystem. By 
normalizing (10) with the time scale, we find 
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By using the methodology introduced by (Karimi, et 
al., 2004b), we find the solution of (23) in terms of 
Haar wavelet basis functions in this form 
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For further information see (Hsiao and Wang, 2000). 

The matrix  

represents the integral operator for wavelets on the 
interval at the resolution . Hence the wavelet 
integral operational matrix  is obtained by 
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Consequently, using (24) and the property of 
Kronecker product, , the 
solution of slow subsystem (23) is 
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4.2.  Solution of fast subsystem For Haar functions, the square matrix  satisfies the 

following recursive formula (Chen and Hsiao, 1997): 
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We consider the fast subsystem and using the related 
time scale, we find the normalized system (12) as 
follows: 
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Similar to Section 4.1, we find the solution of the fast 
subsystem as 
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with dimension . 2nm Theorem 1. Consider the slow subsystem (23) with 
the cost function  in (33). By using the Haar 
wavelets, the approximated optimal feedback control 
of the slow subsystem is obtained as follows:  
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5.  APPROXIMATED OPTIMAL COMPOSITE 
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In this section, the problem is to find the optimal 
control of the linear singularly perturbed system of 
(1) with respect to a quadratic cost functional (2) 
approximately. and also the approximated slow dynamics will be 
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5.1. Optimal control of slow subsystem 
 

 For the slow subsystem, we normalize (11) with the 
related time scale as follows 5.2. Optimal control of fast subsystem 
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According to (Karimi, et al., 2004b), we find the 
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then using u  and 
, the approximated 

optimal control  and optimal trajectory  
are calculated. Then, by eliminating , we 
obtain the following result for the fast subsystem: 
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Theorem 2. Consider the fast subsystem (28) with the 
cost function  in (44). By using the Haar wavelets, 
the approximated optimal feedback control of the fast 
subsystem is obtained as follows:  
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and also the approximated fast dynamics will be 
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Using Lemma1, Theorem 1 and Theorem 2, the 
composite control law of the system (1) with respect 
to the quadratic cost function (2) can be obtained as 
follows: 
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6. NUMERICAL RESULTS 
 
Let us consider the singularly perturbed system and 
related quadratic cost function with initial condition 
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According to section 2.1, the slow subsystem of (57) 
and its cost function, , are as follows: 
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By solving the Riccati differential equation, the 
analytical solution of (59-60) is obtained as (Athans 
and Flab, 1996) 
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To calculate the approximate solution of the slow 
sate, , and compare with the analytic solution 
(61), we choose the resolution level  and both 
the approximate values of state and optimal control 
using Haar functions and the exact values of state and 
optimal control are tabulated in Table 1 for 
comparison. Referring to Section 2.2, the fast 
subsystem of (57) and its cost function would be 
found as: 
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Also, according to Lemma 1 the approximated 
optimal composite control and approximated states of 
the system (57), i.e. and , with 
respect to the cost function (58) are given in Table 2 
and compared with those exact values.  
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Table 1 Approximate values of and )(1 tx s )(tsu  by Haar wavelets at resolution level j  3=

and those exact values                                                       
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it )(1 is tx )( is t                          )(1 is tx )( is tu  
 

0                     0.9972         -0.1435            1.0000        -0.1458 0000.0
1                      0.5235         -0.0750            0.5256        -0.0795 1250.0
2                      0.2715         -0.0412            0.2763        -0.0434 2500.0
3                      0.1410         -0.0218            0.1452        -0.0236 3750.0
4                      0.0705         -0.0105            0.0763        -0.0128 5000.0
5                      0.0400         -0.0045            0.0401        -0.0068 6250.0
6                      0.0205         -0.0018            0.0211        -0.0035 7500.0
7                      0.0100         -0.0005            0.0111        -0.0015 8750.0
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Table 2. Approximate values of , and  by Haar wavelets at resolution level  )(tx )(tx )(tu opt 3=j

and those exact values                                                       
1 2

  
 
                              t                 

                0                    0.997

                2          0             0.271

i i (1 itx

0000.0
               1          0             0.5231250.

2500.
               3          0             0.1413750.
               4          0             0.0705000.
               5          0             0.0406250.
               6          0             0.0207500.
               7          0             0.0108750.

 

 

 
 
 
 
 
 
 
Since the Riccati differential equation is a
equation, the merits of the Haar wavelets 
appreciated from the transformation 
nonlinear differential equations into 
equations systematically. 
 
 

7. CONCLUSION 
 
An implementation of the Haar wavel
optimal control of linear singularly 
systems for any finite time interval was pro
using results of (Karimi, et al., 20
approximated composite control with res
quadratic cost function by solving only 
algebraic equations were calculated and t
were illustrated with a simple example. 
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