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Abstract: Three degrees of freedom are required to completely describe the
orientation (attitude) of a rigid body. Nevertheless, it is possible to use a non—minimal
set of state variables, plus some holonomic constraints, for representing orientation
(e.g. Euler parameters). This paper deals with orientation control problem using this
latter approach, when the motion is constrained to a plane. The simplest testbed for
such a motion is the pendulum. First, an alternative dynamic model of the pendulum
is presented, which uses a non—minimal state representation. Once the orientation
control objective for the plane is established, two controllers that solve this problem
are introduced, and LaSalle’s invariance principle is used to show the achievement of
the control aim. Copyright c° 2005 IFAC
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1. INTRODUCTION

The number of degrees of freedom required to
completely define the pose of a rigid body is six,
being three for position and three for orientation.
According to this, a minimal set of three inde-
pendent variables should be used for any repre-
sentation of the orientation. Traditionally, three
Euler angles are employed. But, in spite of their
popularity, Euler angles su er from representation
singularities.

To avoid this drawback, and also solve the prob-
lem of orientation control, in the recent years some
other non-minimal parameterizations of orienta-
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tion have been studied (see e.g., Spring (1986),
Wen and Kreutz-Delgado (1991)). Examples are
the rotation matrices, the angle-axis pair, and the
Euler parameters. All of them use a set of 3 + k
parameters, related by k holonomic constraints,
in order to keep the required three degrees of
freedom.

Of particular interest are the Euler parameters.
They are four parameters with a unit norm con-
straint, so that they can be considered as unit
quaternions that evolve on S3, the hypersphere of
dimension three.

The main concern of this paper is to clarify the ba-
sic concepts related to the use of Euler parameters
as a non-minimal parameterization of orientation.
In order to do so, and also show the application of



some controllers that use this approach to a simple
mechanism, we have constrained the motion of the
rigid body to only two dimensions (e.g. a plane).
In this case, only three degrees of freedom are
required (one for orientation), and the pendulum
shows up as a useful system to model and control.

2. ORIENTATION CONTROL PROBLEM

The dynamics of a serial—chain n—link robot ma-
nipulator can be written in joint space as (Spong
and Vidyasagar, 1989):

M(q)q̈ + C(q, q̇)q̇ + g(q) = (1)

where q is the n× 1 vector of joint displacements,
q̇ is the n × 1 vector of joint velocities, is the
n × 1 vector of applied torque inputs, M(q) is
the n×n symmetric positive definite manipulator
inertia matrix, C(q, q̇)q̇ is the n × 1 vector of
centripetal and Coriolis torques and g(q) is the
n× 1 vector of gravitational torques.
In the general case, it is common to consider that
the manipulator output x(q) is the pose (position
and orientation) of a frame attached to the end—
e ector referred to a fixed base frame. But in this
paper, for the sake of simplicity, let us consider
that only the orientation is of concern, i.e. x
denotes the end—e ector orientation.

Euler parameters [ T ]
T

S3 IR4 are
usually defined in terms of an angle IR and
a unit vector u S2, corresponding to the angle-
axis representation of a rotation, due to Euler
(Sciavicco and Siciliano, 2000):

x =

¸
=

cos
¡
2

¢
sin
¡
2

¢
u

¸
(2)

where all, , u, , and can be obtained as a
function of q. The angular velocity of the end—
e ector, denoted by IR3, is obtained via the
di erential kinematics by:

= J(q)q̇ (3)

where J(q) IRn×n is the manipulator geometric
Jacobian. As pointed out by Campa et al. (2001),
, , and can also be obtained directly from the
corresponding rotation matrix, R SO(3).

Observe that the Euler parameters and satisfy
the next holonomic constraint

2 + k k2 = 1. (4)

Also, it can be shown that [ ]
T
and [ ]

T

represent the same orientation.

The time derivative of the Euler parameters is es-
tablished by the so—called quaternion propagation
rule (Sciavicco and Siciliano, 2000):

˙ =
1

2
T , (5)

˙ =
1

2
[ I S( )] . (6)

where, for a given x IR3, the skew—symmetric
matrix S(x) is defined by

S(x) =
0 x3 x2
x3 0 x1
x2 x1 0

. (7)

2.1 Orientation error and control objective

The desired orientation trajectory is specified by
the desired Euler parameters d(t) and d(t), the
desired angular velocity d(t) and the desired
angular acceleration ˙ d(t).

The angular velocity error vector e IR3 is
defined by

e = d (8)

and, for the orientation error, let us consider

e= d +
T

d (9)e= d d + S( ) d. (10)

It can be shown that the pair (e, e) forms a unit
quaternion (i.e.

£ e eT ¤T S3) and it corre-
sponds to the Euler parameters for the mutual
orientation between [ d

T
d ]

T
and [ T ]

T
.

Such a definition of the orientation error was first
used by Yuan (1988), and then by other authors
(Lin, 1995; Caccavale et al., 1999; Sciavicco and
Siciliano, 2000).

The orientation control objective is to achieve
that the orientation of the manipulator’s end—
e ector follows the desired orientation. For this,
we can use any representation of the orientation.
In the case of using Euler parameters the control
objective is

lim
t

(t)
(t)

¸
= d(t)

d(t)

¸
, (11)

or, what is the same

lim
t

|e(t)|e(t)
¸
=

1
0

¸
. (12)

Yuan (1988) showed that this control objective is
satisfied if and only if limt e(t) = 0.
We digress momentarily to establish an applica-
tion of the LaSalle’s invariance principle which is
fundamental to the purpose of this paper.



Theorem 1. Consider the autonomous system

ẋ = f(x) (13)

where f : D IRn is a Lipschitz map from a
domain D IRn into IRn. Let V : D IR be a
continuous di erentiable function such that

V (x) as kxk , (14)

and

V̇ (x) 0 for all x D. (15)

Let be

=
n
x D : V̇ (x) = 0

o
(16)

and M be the largest invariant set in . Then

lim
t

dist (x(t),M) = 0 x(0) D. (17)

Proof. The proof relies on application of Theorem
4.4 from Khalil (2001). To this end, define the
closed set Dc D as

Dc = {x D : V (x) c}

for c > 0. In virtue of the radially unbounded-
ness assumption on function V (x) in (14), the
boundedness of set Dc is guaranteed for all values
of c. This fact and (15) imply that Dc is also a
positively invariant set with respect to (13) for
all values of c. Both features of Dc –being a
compact and positively invariant set– are needed
for application of Theorem 4.4 in Khalil (2001).

On the other hand, define the set c as

c =
n
x Dc : V̇ (x) = 0

o
.

Hence, from (15) results

V̇ (x) 0 for all x Dc

which is valid for all values of c. Then, invoking
Theorem 4.4 in Khalil (2001) we have

lim
t

dist (x(t),Mc) = 0 x(0) Dc

where Mc is the largest invariant set in c. Since
c can be arbitrarily large, then we have the con-
clusion (17).

3. A CASE STUDY: THE PENDULUM

The pendulum is a simple and intuitive nonlinear
physical system. Figure 1 shows a diagram of a
pendulum with its distinctive parameters.

For the physical description of the pendulum, let
us consider the following parameters: m, the total

Fig. 1. Simple pendulum

mass of the pendulum, concentrated in the center
of mass; l, the distance between the axis of rota-
tion and the center of mass; , the external torque
applied to the pendulum axis; g, the acceleration
due to gravity. The di erential equation that rules
the motion of the pendulum is:

d

dt

q
q̇

¸
=

q̇
1
ml2 ( mgl sin(q))

¸
,
q
q̇

¸
IR2 (18)

where q is the angle of the pendulum respect to
the vertical and q̇ is the corresponding angular
velocity.

3.1 Non-minimal realization

System (18) uses the minimum number of vari-
ables (states) required to describe completely the
motion of the pendulum. However, it is also pos-
sible to use a non-minimal realization.

Let us consider the next definition of variables:

= cos
³ q
2

´
; = sin

³q
2

´
(19)

so that the holonomic constraint

2 + 2 = 1 (20)

is always satisfied. So, we have that [ ]T S,
i.e. it evolves on the unit circle.

Figure 2 shows how and can be interpreted
physically in the pendulum. Notice that dividing
by 2 the angle q causes the period of the trigono-
metric functions to double. If, for a given angle q
we have a pair [ ]

T
, then for q + 2 (which

topologically corresponds to the same angle) we

have [ ]
T
.

It is clear that parameters and are related
to the Euler parameters described in Section 2.
In fact, they are a particular case, when the
motion is restricted to the plane, and only one
degree of freedom is required for orientation. To
see this, consider the following for the case of the
pendulum.

Suppose that the plane of the motion is the X-Y
plane in the 3D Cartesian space. Then, the only
possible rotation must be accomplished along the



Fig. 2. Physical interpretation of and

axis u = [ 0 0 1 ]
T
. The only variable describing

orientation is the angle q which corresponds to the
variable of the angle-axis representation. Then,

according to (2) the Euler parameters for the pen-

dulum are = cos
¡
q
2

¢
and = [ 0 0 sin

¡
q
2

¢
]T .

Also, notice that = [ 0 0 ]
T
, where = ˙ =

q̇.

So, the four—parameter description of orientation
given by the Euler parameters reduces to only
two non—zero parameters in the case of two—
dimensional motion. These two parameters cor-
respond precisely to the new variables defined
in (19) and their physical significance has been
explained above.

To obtain the time derivatives of and for the
pendulum, we can simply derivate from (19) or
substitute the corresponding terms in the quater-
nion propagation rule (5)—(6). We obtain:

˙ =
1

2
, ˙ =

1

2
.

On the other hand, we can use some trigonometric
identities to get the following useful relations:

cos(q) = 2 2 ; sin(q) = 2 (21)

Taking , , and , as the new state variables, the
pendulum dynamics (18) is expressed as:

d

dt
=

1
2
1
2

1
M [ 2mgl ]

, (22)

where M = ml2 with S× IR IR3.

4. TWO ORIENTATION CONTROLLERS

This section introduces two orientation controllers
for the pendulum, which make use of a non—
minimal representation for the orientation. In the
case of motion in the plane, the orientation error
reduces to (see (9)-(10)):

e= d + d (23)e= d d . (24)

where [ d d ]
T

S corresponds to the desired
orientation, and can be obtained from a desired
angle qd through a map similar to (19). Also,

notice that [ e e]T S is obtained applying the
same map to the angle eq = qd q. Moreover, the
angular velocity error is defined as e = d ,
where d is the desired angular velocity.

By using (20), and the fact that 2
d +

2
d = 1, it

can be shown that [ e e], as defined in (23)-(24),
also satisfies the unit norm constraint, i.e.

e2 + e2 = 1 (25)

The orientation control objective in the plane is
ensured if

lim
t

e(t) = 0. (26)

For the analysis below, it is convenient to define
the domain D IR3 as:

D = S× IR =
eee IR3 : e2 + e2 1 = 0 . (27)

4.1 Resolved acceleration control

First proposed by Luh et al. (1980) for solving the
general problem of task space control. In the case
of the pendulum, this controller reduces to:

=M [ ˙d + kve + kpe] + 2mgl (28)

where kp and kv are strictly positive control gains.

By substituting the control law (28) into pendu-
lum dynamics (22) we get the closed—loop equa-
tion: ė + kve + kpe= 0
which can be expressed in terms of the state vector
[ e e e ]T as:

d

dt

eee =

1
2ee
1
2 ee

kpe kve ,
eee D. (29)

This is an autonomous system, with equilibria in
the set (see Figure 3):

S = {[ e e e ]T D : |e| = 1, e= 0, e = 0}.(30)



Fig. 3. Domain of definition of the closed—loop
system

Notice that S has only two elements, that is, the
equilibria are ateee =

1
0
0

and
eee =

1
0
0

.

Notwithstanding, according to the definition of e
they correspond to the cases where eq = 0 andeq = 2 , respectively, which represent the same
orientation.

In order to analyze the system behavior, we shall
utilize Theorem 1. To this end, consider the fol-
lowing function, which has been inspired from Lin
(1995):

V (e, e, e) = [e 1]2 + e2 + 1

2kp
e2. (31)

It is easy to verify that above function is radially
unbounded in the sense (14). Obtaining the time
derivative of (31), along the trajectories defined
by (29) we get:

V̇ (e, e, e) = kv
kp
e2 0

eee D.

On the other hand, the set defined as (16)
results in

= {[ e e e ]T D : e2 + e2 1 = 0, e = 0}.
It is easy to see that the largest invariant set
in is the equilibria set S. Therefore, invoking
Theorem 1 it can be concluded that the closed—
loop system trajectories tend asymptotically to
the equilibria, i.e.

lim
t

dist
e(t)e(t)e(t) S = 0

e(0)e(0)e(0) D.

This ensures that the control objective (26) is
achieved globally in the sense that any desired
time—varying orientation [ d(t) d(t) ]

T
S, is

asymptotically tracked from any initial orienta-
tion.

4.2 Slotine-Li type control

This is an original controller, proposed to solve the
problem of orientation control for the pendulum.
It is motivated by the non—adaptive version of the
controller introduced by Slotine and Li (1988).
The proposed control law is given by:

=M ˙d +
1

2
ee¸+ kpe+ kve + 2mgl (32)

where kp y kv are strictly positive control gains,
and

= k 1
v kp. (33)

By substituting (32) into (22), we obtain the
closed—loop equation

M ė + 1
2
ee¸+ kpe+ kve = 0

which can be also expressed in terms of the
conventional states:

d

dt

eee =

1
2ee
1
2 ee

1
M [ kpe kve] 1

2 ee ,
eee D (34)

where we can see that it is an autonomous sys-
tem with equilibria in the set S defined in (30),
that is, the same equilibria than for the resolved
acceleration control system.

For the closed—loop analysis, we propose the fol-
lowing function inspired by the one introduced by
Spong et al (1990):

V (e, e, e) = M

2kp
[e + e]2 + 2e2 + 2[e 1]2 (35)

which is radially unbounded in the sense of (14).
The time derivative of (35) along the trajectories
of system (34) yields:

V̇ (e, e, e) = e2 1e2.
where we have used the definition of (33), to
simplify the terms. Notice that it satisfies

V̇ (e, e, e) 0
eee D.

Observe that the set defined as (16) reduces to

= {[ e e e ]T D : |e| = 1, e= 0, e = 0}.
This is trivially the invariant set because it cor-
responds to the equilibria set S. Therefore, in
virtue of the Theorem 1, the closed—loop system
trajectories tend asymptotically to the equilibria,
i.e.

lim
t

dist
e(t)e(t)e(t) S = 0

e(0)e(0)e(0) D,



hence, the control objective (26) is achieved glob-
ally in the sense that any desired time—varying
orientation [ d(t) d(t) ]

T
S, is tracked start-

ing from any initial orientation.

4.3 Discussion

Simulations of the closed—loop systems (29) and
(34) reveal that they have similar qualitative
behavior. One equilibrium is asymptotically stable
and the other, which is unstable, possesses a stable
manifold. The flow of these systems is illustrated
in Figure 4. As expected, the flow lines tend to
the equilibria, so indicating the matching of the
desired orientation (and desired angular velocity
as well).

Fig. 4. Flow of the closed—loop systems as viewed
on the plane

5. CONCLUSION

Although only three parameters are required to
completely describe the orientation of a rigid body
in space, there exist several representation for
the orientation that use a non-minimal set of
parameters. Among these representations, Euler
parameters are commonly used because of their
properties as unit quaternions. We have employed
this approach to describe the pendulum dynamics,

where the four Euler parameters reduce to only
two.

In order to show the feasibility of this non—
minimal state representation of the pendulum,
we have studied two controllers that solve the
orientation control problem in a plane. In both
cases, we can conclude the fulfillment of the orien-
tation tracking objective, by using an appropriate
version of the LaSalle’s invariance principle.
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