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Abstract:
Modulated feedback control introduces periodicity. The global attracting property
of the periodic points is established for a simple scalar discrete-time system
under ∆-modulated feedback. Attracting regions of the periodic points are also
characterized. When the discretization effects of the equivalent control based
sliding mode control systems are studied, we show that the zero-order-hold
discretization gives rise to ∆-modulation in the sliding mode direction. The global
attracting property of ∆-modulated feedback offers a vivid illustration of the way
sliding happens. Interestingly, we find that a ZOH discretization scheme of the
equivalent control based sliding mode control system with relative degree one
results in only two-periodic orbits. Copyright 2005 IFAC
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1. INTRODUCTION

Discrete sliding mode control arises in two differ-
ent situations: one associated with sliding mode
control of discrete-time systems and the other
resulting from discretization of the sliding mode
control of continuous-time systems. Studies of
both cases have been reported in the literature
(see (Wu, Drakuno and Ozguner, 2000; Koshkouei
and Zinober, 2000; Yu, 1998; Yu and Chen, 2003)
and references therein).

A different line of research is Sigma-Delta (or ∆-
) modulation and ∆-modulated feedback of dis-
crete signals and/or systems. Sigma-Delta mod-
ulation first appeared in electronic circuits as a

method of analog-to-digital conversion(Inose and
Yasuda, 1963; Leonov, 1959). An early implemen-
tation of ∆-modulated feedback control is the
transmitting power control of a mobile unit in the
Direct Sequence Code Division Multiple Access
(DS-CDMA) cellular network (Ariyavisitakul and
Chang, 1991), due to the requirement that only
one bit of datum is allowed for the implementation
of the power controller. More recent studies, mo-
tivated by the renewed interest in hybrid system
with hard nonlinearities, include ∆-modulated
feedback control systems and the associated com-
plexities (Xia, Gai and Chen, 2004; Gai, Xia and
Chen, 2003; Xia and Zinober, 2004; Xia, Chen,
Gai and Zinober, 2004).



The link between sliding mode control and ∆-
modulated control was first noted in (Zinober
and Xia, 2004). This paper explores further the
connection. We show that the zero-order-hold dis-
cretization of the equivalent control based sliding
mode control system gives rise to ∆-modulation
in the sliding mode direction. To illustrate vividly
how sliding is achieved, we first present a detailed
investigation of the global attracting properties of
a scalar discrete-time system under ∆-modulated
feedback. Global attractiveness of equivalent con-
trol based sliding mode control is then realized
by the modulation in the sliding direction and
followed by the absorption of the stable zero
dynamics of the system. Another interesting re-
sult is that a ZOH discretization scheme of the
equivalent control based sliding mode control sys-
tem with relative degree one produces only two-
periodic orbits, understandably due to sampling.
The periodic orbits are regulated by the sampling
period to move in the close vicinity of the sliding
mode hyperplane.

The layout of the paper is as follows. In Section 2,
we investigate the global attracting properties of
a scalar discrete-time system under ∆-modulated
feedback. The study of the discretization of the
equivalent control based sliding mode control sys-
tem is in Section 3.

2. DELTA-MODULATED CONTROL

In this section we study the periodic orbits of the
following scalar, discrete-time linear system:

x+ = ax−∆sgn (ax), (1)

where x ∈ R is the state variable, x+ denotes the
system state at the next discrete time, and a is
a real number. ∆ is a positive real number and
sgn (x) is the function defined by

sgn (x) =
{

1, when x ≥ 0;
−1, when x < 0.

Here, we will only be concerned with the case
|a| ≤ 1. The existence of periodic points for the
case |a| > 1 has been discussed in (Gai, Xia and
Chen, 2003; Xia, Gai and Chen, 2004; Xia, Chen,
Gai and Zinober, 2004).

The case |a| ≤ 1 provides a relatively thorough
investigation of the periodicity and its attractive-
ness. A detailed analysis gives a vivid illustration
of the sliding mode control in the next section.

Theorem 1. 1) when |a| = 1, Ω = [−∆,∆] is a
global attractor on (−∞,∞);

2) when |a| < 1, the global attractor is the
following set of two points:

{−∆/(1 + |a|),∆/(1 + |a|)}; (2)

3) when 0 ≤ a < 1, the two points in (2) are 2-
periodic points; when −1 < a < 0, the two points
in (2) are (1-periodic) fixed points.

Proof: Denote the closed-loop system as

x+ = ax−∆sgn (ax)
def
= fc(x). (3)

In the following, we only give a proof for the case
when 0 ≤ a ≤ 1. A proof for the case −1 ≤ a < 0
can be worked out similarly.

Our proof is divided into five parts.

(1) For 0 ≤ a ≤ 1, fc(Ω) ⊂ Ω.

This is readily verified by the definition of fc.

(2) For 0 ≤ a ≤ 1, Ω is globally attractive.

(a) If x > ∆, then x+ = ax − ∆ ≤ x − ∆. So
fk

c (x) is decreasing as long as it is positive. We
prove, by contradiction, that {fk

c (x)} enters Ω.
Suppose this is not the case. Then there are only
two situations: Case (i): fk

c (x) > ∆ for all k. Case
(ii): There exists a positive integer l such that
x > fc(x) > · · · > f l

c(x) > ∆, but f l+1
c (x) < −∆.

In Case (i), since {fk
c (x)} is decreasing and

bounded from below, we have fk
c (x) → x∗ ≥ ∆

and therefore x∗ = ax∗ −∆, or, (1− a)x∗ = −∆,
which is impossible, since (1−a)x∗ is non-negative
when 0 ≤ a ≤ 1 and x∗ ≥ ∆.

In Case (ii), by assumption we have f l+1
c (x) =

af l
c(x) − ∆ < −∆, hence af l

c(x) < 0, which is
impossible since a ≥ 0 and f l

c(x) > ∆.

(b) If x ≤ −∆, then

x+ = ax + ∆ ≥ x + ∆.

So fk+1
c (x) ≥ fk

c (x), if fk
c (x) is negative. Simi-

larly, we can prove that {fk
c (x)} enters Ω.

(3) When a = 1, Ω is an attractor.

From Part 1 of the proof, fc(Ω) ⊂ Ω. We need
only prove that Ω ⊂ fc(Ω).

To see this, first note that 0 ∈ fc(Ω) since fc(∆) =
0. For any 0 6= y ∈ Ω, define x̄ = y−∆sgn y. Then,
since fc(Ω) ⊂ Ω, we have x̄ ∈ Ω. Note that x̄ and
y have opposite signs (e.g., if y > 0, then since
0 < y ≤ ∆, we have x̄ = y −∆ < 0), so

fc(x̄) = y.

From this last equation we have f2
c (y) = y. We

conclude that (when a = 1): any point in the half
open interval (−∆,∆] is a 2-periodic point.

It is also straightforward to verify that when
a = −1: i) all points except for ±∆/2 in the closed



interval [−∆,∆] are 2-periodic; ii) ±∆/2 are fixed
points.

(4) When 0 ≤ a < 1, the attractor is {−∆/(1 + |a|),
∆/(1 + |a|)}, which is a 2-periodic orbit.

From the above proof, the attractor, if it exists,
belongs to Ω = [−∆,∆]. It is therefore interesting
to see how fc evolves on Ω. Note that fc trans-
forms Ω into

fc(Ω) = [−∆,−(1− a)∆] ∪ [(1− a)∆,∆],

therefore (−(1 − a)∆, (1 − a)∆) is cut away, and
it does not belong to the fc-invariant set in Ω.

Generally, if we denote fk
c (Ω) = [−ak,−bk] ∪

[bk, ak] for ak ≥ bk > 0, then we can derive the
following iterative relations of ak and bk:

ak+1 = ∆− abk,
bk+1 = ∆− aak.

(4)

We can then easily prove, by mathematical in-
duction, that: 1) a2i+1 = a2i, for i = 0, 1, 2, . . .; 2)
{ak} is a decreasing sequence.

Therefore, since ak ≥ bk > 0, there exist a∗ ≥
b∗ > 0 such that, as k →∞,

ak → a∗, and bk → b∗.

We find that a∗ = b∗ = ∆/(1+a). In other words,
∞⋂

k=1

fk
c [−∆,∆] = {−∆/(1 + a),∆/(1 + a)},

which, hence, is the global attractor.

It can be easily verified that {−∆/(1+a),∆/(1+
a)} is the 2-periodic orbit of the closed-loop sys-
tem.

(5) When −1 < a < 0, it can be similarly verified
that {−∆/(1−a),∆/(1−a)} is a global attractor,
and these two points are (1-periodic) fixed points
of the closed-loop system.

Since the periodic points are globally attractive,
it is interesting to find out the attracting region
for each of the periodic points.

First, we introduce a new concept. For any real
number x and a 6= 0 (the case a = 0 is trivial), the
characteristic index κ is defined as the following
non-negative integer:

κ =
⌊
log|a|

(
∆

∆ + (1− |a|)|x|
)⌋

,

where b∗c denotes the floor, i.e., the maximal
integer bounded by the real number *.

Lemma 1. i) For any x, the characteristic index
κ is the smallest non-negative integer m such that

|f (m)
c | < ∆

|a| .

ii.1) For −1 < a < 0, κ is the smallest non-
negative integer m such that f

(m)
c and f

(m+1)
c

have the same sign;

ii.2) For 0 < a < 1, κ is the smallest non-
negative integer m such that f

(m)
c and f

(m+1)
c

have opposite signs.

Proof: We prove the result only for the case 0 <
a < 1. Proof for other cases can be worked out
along similar lines, and it is therefore omitted.

If 0 < a < 1, it follows that

f (m+1)
c = af (m)

c − sgn (f (m)
c )∆

=
{

af (m)
c −∆, f (m)

c ≥ 0;
af (m)

c + ∆, f (m)
c < 0.

(5)

It is easy to see that |f (m)
c | < ∆/a if and only if

f
(m)
c and f

(m+1)
c have different signs.

Note that for m ≤ κ:

if x > 0, then we can calculate

f (m)
c (x) = am|x| − (1− am)

(1− a)
∆;

if x ≤ 0, then

f (m)
c (x) =−am|x|+ (1− am)

(1− a)
∆.

It is then straightforward to verify that the real
number s = loga

∆
∆+(1−a)|x| satisfies

as|x| − (1− as)
(1− a)

∆ = 0.

Therefore, κ = bsc is the smallest integer such
that f

(m)
c changes sign.

This completes the proof of the lemma.

The analysis given in the proof can be useful
in finding the limiting periodic points. For il-
lustration, we will carry this out separately for
−1 < a < 0. If −1 < a < 0, then we have

f (m+1)
c (x) = fc(f (m)

c )(x)

= af (m)
c (x) + sgn (f (m)

c (x))∆.

By ii.1) of Lemma 1, f
(m)
c has the same sign as

f
(κ)
c , for m ≥ κ. Therefore, we have, for m ≥ κ,

f (m+1)
c (x) = af (m)

c (x) + sgn (f (κ)
c (x))∆.



Hence, by denoting the limit of f
(m)
c by x∗, we can

solve x∗ from x∗ = ax∗ + sgn (f (κ)
c )∆, to obtain

x∗ = sgn (f(κ)
c )∆

1−a .

Theorem 2. For any x, denote its characteristic
index as κ.

i) For −1 < a < 0, x belongs to the attracting
region of ∆

1−a (− ∆
1−a ) if and only if sgn (x(κ)) = 1

(sgn (x(κ)) = −1).

ii) For 0 ≤ a < 1, x belongs to the attracting
region of ∆

1+a (− ∆
1+a ) if and only if sgn (x(κ)) =

(−1)κ (sgn (x(κ)) = (−1)κ+1).

3. APPLICATION TO DISCRETIZED SMC
SYSTEMS

For a continuous time system

ẋ = Ax + bu, (6)

where x ∈ Rn, A is an n × n matrix, and b is
an n-dimensional vector. A basic Sliding Mode
Control (SMC) design (Zinober, 1994) is to seek
a sliding mode defined by s = cT x, where c is an
n-dimensional vector, such that cT x has relative
degree 1 w.r.t. system (6), i.e.,

cT b 6= 0. (7)

In this case, a sliding mode controller is obtained:

u = −αcT x− 1
cT b

cT Ax− β

cT b
sgn (cT x), (8)

in which α ≥ 0 and β > 0 are tuning parameters.
There are three parts in the controller

ur = −αcT x, ueq = − 1
cT b

cT Ax,

us = − β

cT b
sgn (cT x).

The equivalent control ueq (Zinober, 1994) is de-
rived by solving ṡ = 0, where ṡ = cT (Ax + bu)
is the derivative of s along the dynamics of (6).
The switching control us is designed to satisfy the
sliding condition

sṡ ≤ 0.

The reaching control ur adds some reaching ma-
nipulability to avoid the chattering problem (Gao
and Hung, 1993).

The SMC design is applicable to system (6) when
it is minimal phase, with cT x as an output (Byrnes
and Isidori, 1988).

To study the discretization effects on the sliding
mode controller, we assume that the controller u

is digitized through a zero-order holder (ZOH) at
the sampling moments:

u(t) = uk
def
= u(kh)

=−αcT x(kh)− 1
cT b

cT Ax(kh)

− β

cT b
sgn (cT x(kh))

∆=−αcT x(k)− 1
cT b

cT Ax(k)

− β

cT b
sgn (cT x(k)), (9)

for all t ∈ [kh, (k + 1)h), in which h > 0 is the
sampling period. A discrete-time conversion of the
system (6) under ZOH is obtained:

x(k + 1) = eAhx(k) +

h∫

0

dAτd τuk, (10)

where uk is given in (9).

To reveal the special structure of discretization
of the system, let us first make the coordinate
transformation on the original (closed-loop) sys-
tem (6) under feedback (8): z1 = cT x, and choose
c2, c3, . . . , cn ∈ Rn satisfying cT

i b = 0, for i =
2, 3, . . . , n, and {c, c2, c3, . . . , cn} is a linearly in-
dependent set. This is always possible due to (7).

Hence, let zi = cT
i x, for i = 2, 3, . . . , n. It is easily

seen that system (6) under SMC is written in the
new coordinates as

ż1 =−αz1 − βsgn (z1),
˙̃z = Ψz̃ + pz1,

in which we denote z̃ = (z2, z3, . . . , zn)T , Ψ ∈
R(n−1)×(n−1) is a stable matrix, due to the as-
sumption that the system is minimal phase, and
p ∈ Rn−1.

Applying a zero-order hold discretization to the
system in coordinates z, we obtain

z+
1 = κz1 −∆sgn (z1), (11)

z̃+ = Φz̃ + γz1, (12)

in which

κ = e−αh

∆ =
{

β(1− e−αh)/α, when α 6= 0,
βh when α = 0,

Φ = eΨh,

γ = (−αhIn−1 −Ψh)−1(e−αhIn−1 − eΨh)p,

and h > 0 is the sampling period. These equations
are readily derived by applying the formulae in
(10). As a matter of fact, the system (11-12) is



the transformed version of (10) under the same
coordinate transformation.

We note that the dynamics of z1 is decoupled
from that of z̃. It is exactly in a form that has
been considered in the previous section. Since
0 < κ ≤ 1, we know from Theorem 1 that when
0 < κ < 1, {±∆/(1 + κ)} is the only (2-) periodic
orbit, and it is globally attracting; when κ = 1,
every point in (−∆,∆] is 2-periodic, any point is
attracted to one pair of these 2-periodic points.

Consider a discrete-time system of order n,

x+ = Ax + bu, (13)

where x ∈ Rn is the state, x+ denotes the system
state at the next discrete time step, u ∈ R is the
scalar input, A is an n×n matrix of real numbers,
and b is a column vector of n real numbers. If A
is a stable matrix, i.e., the eigenvalues of A lie
within the unit circle.

An input sequence {ui, i = 0, 1, 2, . . .} is called
asymptotically L-periodic, if there are L real num-
bers {u∗0, u∗1, . . . , u∗L−1} such that limi→∞ ui =
u∗

(i mod L)
.

Theorem 3. Consider the discrete-time system
(13) with a stable A matrix.

(i) For an asymptotically L-periodic input se-
quence, there is a periodic orbit of period L for
system (13).

(ii) This periodic orbit is globally attracting.

Proof: It is easily verified that there is a pe-
riodic orbit of period L for the system (13)
corresponding to an L-periodic input sequence
{u∗0, u∗1, . . . , u∗L−1}, and it is easily verified that
this periodic orbit starts at

x∗ = (I −AL)−1(AL−1bu∗0 + · · ·+ bu∗L−1).

Now we show that this periodic orbit is globally
attracting. We need only show that any other
orbit {y(i)} corresponding to the asymptotically
L-periodic input sequence {ui, i = 0, 1, 2, . . . , }
satisfies y(kL) → x∗.

To this end, by definition, we have

y(L) = ALy(0) + AL−1bu0 + · · ·+ buL−1,

and iteratively, for k = 1, 2, 3, . . .,

y((k+1)L) = ALy(kL) + AL−1bukL

+ · · ·+ bu(k+1)L−1. (14)

We prove that {y(kL)} is a Cauchy series. For
any ε > 0, because {ui, i = 0, 1, 2, . . .} is an

asymptotically L-periodic input sequence, there
exists an integer sL such that when k ≥ sL,

|uk+L − uk| ≤ (1− ||A||)(1− ||A||L)2

2||b|| ε, (15)

in which we use any norm such that ||A|| < 1
(which is possible by the stability assumption on
A). From (14), we have

||y((k+1)L) − y(kL)|| ≤ ||AL||||y(kL) − y((k−1)L)||
+||A||L−1||b|||ukL − u(k−1)L|
+ · · ·+ ||b|||u(k+1)L−1 − ukL−1|.

Hence from (15), when k > s, we derive

||y((k+1)L) − y(kL)|| ≤ ||AL||||y(kL) − y((k−1)L)||

< ||AL||||y(kL) − y((k−1)L)||+ (1− ||A||L)2

2||b|| ε(16)

Choose an integer s̄ > s such that

||AL||s̄−s||y(sL) − y((s−1)L)|| < (1− ||A||L)
2

ε,

then by repeatedly application of (16), we have

||y(s̄L) − y((s̄−1)L)|| < (1− ||A||L)ε. (17)

For any integer t > 0, and again by repeatedly
application of (16) and (17), we have

||y((s̄+t)L) − y((s̄−1)L)|| ≤ ||y((s̄+t)L) − y((s̄+t−1)L)||
+ · · ·+ ||y(s̄L) − y((s̄−1)L)||

< (||AL||t + · · ·+ 1)(1− ||A||L)ε < ε.

Therefore, y(kL) is converging, and denoting y∗ =
limk→∞ y(kL), then from (14), we have

y∗ = ALy∗ + AL−1b lim
k→∞

ukL + AL−2b lim
k→∞

ukL+1

+ · · ·+ b lim
k→∞

u(k+1)L−1

= ALy∗ + AL−1bu∗0 + AL−2bu∗1 + · · ·+ bu∗L−1.

From this last equation we obtain

y∗ = (I −AL)−1(AL−1bu∗0 + AL−2bu∗1
+ · · ·+ bu∗L−1) = x∗.

To find the periodic points of (11) and (12), first
of all we note that z1 can only be 2-periodic.
Therefore, z1 in (12) can be regarded as a 2-
periodic (modulated) orbit, in order to find the
periodic orbit for the overall system. Since z1 is
asymptotically 2-periodic and Φ is stable, we can
apply Theorem 3 to conclude that there is/are
only 2-periodic orbit(s) arising from discretization



of SMC. These conclusions are summarized in the
following theorem.

Theorem 4. Discretization of SMC results in
only 2-periodic orbits. When α > 0, there is
a unique 2-periodic orbit determined by (in z
coordinates): {P,−P}, in which

P = ∆/(1 + κ)
[ −1

(In−1 + Φ)−1γ

]
. (18)

This pair is globally attracting.

When α = 0, each pair of points of the following
form (in z coordinates)

{
ϕ

[ −1
(In−1 + Φ)−1γ

]
,−ϕ

[ −1
(In−1 + Φ)−1γ

]}

for ϕ ∈ [−∆,∆), is a 2-periodic orbit.

Proof: When α 6= 0, by Theorem 1, z1 is globally
attracted to two periodic points ±∆/(1 + κ). It
is easily verified that the two points in (18) are
the only 2-periodic points for the system. The z̃
part in (12) has exactly the structure discussed in
Theorem 3, therefore these two points are globally
attracting.

Similar arguments apply to the case when α = 0.

This result clearly indicates how sliding mode
is achieved: first of all the system is dragged
towards the sliding mode (z1) by a ∆-modulation
mechanism, then it is absorbed by its stable zero
dynamics (the matrix Φ is stable).

From the expressions given in the theorem, the
two periodic points are on two different sides of
the sliding mode hyperplane (defined by z1 =
0). It is also noticed that the component-wise
distance of the two periodic points is ordered at
O(∆). And from the expression of ∆ following
(12), in both situations α = 0 and α 6= 0, ∆ ∼ 2h.
So eventually, we conclude that the distance of any
two corresponding components of the two periodic
points is ordered at O(h).

Hence, the chattering of SMC still exists in its
ZOH sampling implementation, but it is regulated
by the sampling period h. When h is very small,
chattering becomes “invisible”.

Note that a crucial assumption in arriving at
Theorem 4 is that system (1) has relative degree
1 taking the sliding surface as an output. If this
is not the case, much more complicated situations
can arise as illustrated in (Yu, 1998).
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