
CONTROLLABILITY AND QUADRATIC
STABILIZATION OF A CLASS OF DISCRETE

LINEAR REPETITIVE PROCESSES

Krzysztof Galkowski ∗ Blazej Cichy ∗ Eric Rogers ∗∗

Gerhard Jank ∗∗∗

∗ University of Zielona Gora, Institute of Control and

Computation Engineering,

URL. Podgorna 50, 65-246 Zielona Gora, Poland

e-mail: {B.Cichy,K.Galkowski}@issi.uz.zgora.pl1,2

∗∗ School of Electronics and Computer Science,

University of Southhampton, Southampton SO17 1BJ, UK

e-mail: etar@ecs.soton.ac.uk
∗∗∗ Institute of Mathematics 2,

RWTH Aachen, Germany.

e-mail: jank@math2.rwth-aachen.de

Abstract: Repetitive processes are a distinct class of two-dimensional systems
(i.e. information propagation in two independent directions) of both systems
theoretic and applications interest. They cannot be controlled by direct extension
of existing techniques from either standard (termed 1D here) or two-dimensional
(2D) systems theory. In this paper we define a new model for these processes
necessary to represent dynamics which arise in some applications areas and which
are not included in the currently used model. Then we proceed to define quadratic
stability for this case and develop the first results on a control theory in the form
of pass controllability and the design of physically based control laws. Copyright
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1. INTRODUCTION

The essential unique characteristic of a repetitive,
or multipass, process is a series of sweeps, termed
passes, through a set of dynamics defined over
a fixed finite duration known as the pass length.
On each pass an output, termed the pass profile, is
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produced which acts as a forcing function on, and
hence contributes to, the dynamics of the next
pass profile. This, in turn, leads to the unique
control problem for these processes in that the
output sequence of pass profiles generated can
contain oscillations that increase in amplitude in
the pass-to-pass direction.

To introduce a formal definition, let α < ∞ de-
note the pass length (assumed constant). Then
in a repetitive process the pass profile yk(p),
0 ≤ t ≤ α, generated on pass k acts as a forcing
function on, and hence contributes to, the dynam-



ics of the next pass profile yk+1(p), 0 ≤ p ≤ α,
k ≥ 0.

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling opera-
tions (Edwards, 1974). Also in recent years ap-
plications have arisen where adopting a repeti-
tive process setting for analysis has distinct ad-
vantages over alternatives. Examples of these
so-called algorithmic applications include classes
of iterative learning control schemes (Amann et

al., 1998) and iterative algorithms for solving non-
linear dynamic optimal control problems based on
the maximum principle (Roberts, 2000). Attempts
to control these processes using standard (or 1D)
systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because
such an approach ignores their inherent 2D sys-
tems structure, i.e. information propagation oc-
curs from pass-to-pass and along a given pass and
also the initial conditions are reset before the start
of each new pass.

In seeking a rigorous foundation on which to
develop a control theory for these processes, it
is natural to attempt to exploit structural links
which exist between, in particular, the class of
so-called discrete linear repetitive processes and
2D linear systems described by the extensively
studied Roesser (Roesser, 1975) or Fornasini-
Marchesini (Fornasini and Marchesini, 1978) state
space models. Discrete linear repetitive processes
are distinct from such 2D linear systems in the
sense that information propagation in one of the
two separate directions (along the pass) only oc-
curs over a finite duration. As a result, recourse
to solving control problems by this route has only
proved of limited use and leaves many key systems
theoretic and control design issues to be addressed
by the development of suitable theory and algo-
rithms.

In this paper, we first propose a new model for
discrete linear repetitive processes which captures
features of the dynamics of these processes which
are excluded from the currently used model(s) but
which arise in a number of potential applications
areas. Then we proceed to develop results on the
controllability properties of this model and also
on so-called quadratic stabilization. Throughout
this paper, the null matrix and the identity matrix
with the required dimensions are denoted by 0 and
I, respectively. Moreover, M > 0 (< 0) denotes a
real symmetric positive (negative) definite matrix.
We use (∗) to denote the transpose of matrix
blocks in some of the LMIs employed (which are
required to be symmetric).

p
a
s
s
 
t
o
 
p
a
s
s

along the pass
0

k

k+1
x (p+1)k+1x (p)k+1

y (0)k
y (p)k y (p+1)k y ( )k a-1

k+2

a-1 p

Fig. 1. Illustrating the updating structure of (1).

2. BACKGROUND AND PRELIMINARY
ANALYSIS

The most basic discrete linear repetitive process
state space model (Rogers and Owens, 1992) has
the following form over 0 ≤ p ≤ α, k ≥ 0

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p).
(1)

Here on pass k, xk(p) ∈ R
n is the state

vector,yk(p) ∈ R
m is the pass profile vector,

anduk(p) ∈ R
r is the vector of control inputs.To

complete the process description, it is necessary to
specify the boundary conditions, i.e. the state ini-
tial vector on each pass and the initial pass profile.
Here no loss of generality arises from assuming

xk+1(0) = dk+1, k ≥ 0

y0(p) = f(p), 0 ≤ p ≤ α − 1 (2)

where the n × 1 vector dk+1 has known constant
entries and f(p) is an m × 1 vector whose entries
are known.

The dynamics of (1) and, in particular, the up-
dating structure can be visualized as in Fig. 1.
This model however cannot be used in some prac-
tically related situations. For example, in (Rogers
et al., 2002) it was shown that the structure
of the pass state initial vector sequence alone
can cause instability in the sense of (Rogers and
Owens, 1992) (this reference gives the stability
theory for linear repetitive processes which is
based on ensuring that the oscillations which in-
crease in amplitude cannot occur in either pass
to pass or along the pass). The route was to
add terms to xk+1(0) in (2) which are an explicit
function of the previous pass profile. In this paper
we consider the following model over k ≥ 0 and
0 ≤ p ≤ α − 1 is

xk+1(p) = A0xk(p) + A1xk(p + 1)

+ B0uk(p) + B1uk(p + 1) (3)

with boundary conditions

x0(p) = g(p), 0 ≤ p ≤ α

xk(α) = gk, k ≥ 0 (4)
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where now g(p) is an n × 1 vector whose entries
are known functions of p over [0, α], and gk is an
n × 1 vector with known constant entries.

The dynamics of (3) and (4) can be visualized
as in Fig. 2 and this diagram together with
Fig 1 can be used to explain the core differences
between these two models (i.e. the one given by
(1) and (2) and the second by (3) and (4)). In
2D systems terms, we see that the first model
is quarter plane causal and the second is not.
Also this new model does not have any joint up-
dating of variables in both directions. Moreover,
the boundary conditions are radically different,
since in the first model the pass initial condi-
tions are independently specified (i.e. the sequence
dk+1, k ≥ 0) and in the second these are the end
pass value xk(α) = gk from the previous pass.
The causal structure in the first model can be the
source of difficulty in modelling many practically
relevant cases in, for example, robotics (Arimoto
et al., 1984) and (Yamakita and Furuta, 1991),
multidimensional signal processing (Jain, 1981),
or the discretization of partial differential equa-
tions (Levy et al., 1990).

This model can be also considered as a discrete
counterpart of the partial differential equation
model

∂x(t, τ)

∂τ
= Â0x(t, τ) + Â1

∂x(t, τ)

∂t
which finds numerous engineering applications
in modelling and control of transport-reaction
processes, see e.g. (Panagiotis and Christofides,
2001). Assume now that xk(p) is a discrete ap-
proximation of x(t, τ) with xk(p) = x(kT2, pT1),
where T1 and T2 are discretization periods along
the directions τ and t respectively. Now introduce

∂x(t, τ)

∂τ
:=

xk+1(p) − xk(p)

T1

and
∂x(t, τ)

∂t
:=

xk(p + 1) − xk(p)

T2

which yield the following model of the form con-
sidered in this paper

xk(p + 1) =

[
I + T1Â0 −

T1

T2

Â1

]
xk(p) +

T1

T2

Â1xk(p + 1).

The analysis in this paper will make extensive use
of the well known Schur’s complement formula for
matrices and the following well known result.

Lemma 1. For any appropriately dimensioned ma-
trices Σ1, Σ2 and F such that FT F ≤ I together
with a scalar ǫ > 0 :

Σ1FΣ2 + ΣT
2 FΣT

1 ≤ ǫ−1Σ1ΣT
1 + ǫΣT

2 Σ2. (5)

3. 1D EQUIVALENT MODEL AND
CONTROLLABILITY

Consider a process described (1) and (2). Then
(see (Rogers and Owens, 1992)) it has turned out
that a powerful approach to some (but by no
means all) control related problems is to exploit
their inherent 2D linear systems structure and,
in effect, adapt tools/results first developed for
2D linear systems described by the extensively
studied Roesser (Roesser, 1975) and Fornasini
Marchesini (Fornasini and Marchesini, 1978) state
space models. In cases where this approach is not
applicable, e.g., pass controllability (Ga lkowski et

al., 1998) and the presence of so-called dynamic
boundary conditions (Owens and Rogers, 1999)
which have no Roesser or Fornasini Marchesini
model equivalents, the 1D equivalent model has
provided the analysis basis on which to solve the
problems being considered. Here we show that
the 1D equivalent model does extend directly to
the class of discrete linear repetitive processes
considered here and, as a first use, we show that
it immediately allows us to characterize the very
important property of pass controllability, i.e. the
ability to use causal control action to force the
process to produce a specified pass profile on
a specified pass number. (An alternative version
does not pre-specify the pass number but only
that a specified pass profile is produced on some
pass during the processes evolution.) In actual
fact, the construction of the 1D equivalent model
mirrors very closely that reported previously (see,
for example (Ga lkowski et al., 1998)) and hence
only the main steps are detailed here.

First define the so-called global state, input and
pass profile vectors of dimensions nα× 1, mα× 1,
and lα × 1 respectively for (3)

X(k) =




xk(0)
xk(1)
xk(2)

...
xk(α − 1)




, U(k) =




uk(0)
uk(1)
uk(2)

...
uk(α)




. (6)

Then the 1D equivalent model for the dynamics
of discrete linear repetitive processes described
by (3)and (4) is given by

X(k + 1) = ΓX(k) + ΣU(k) + Ψ0xk(α) (7)



where

Ψ0 =




0
0
0
...

A1




, Σ =




B0 B1 0
B0 B1

B0

. . .

. . .
. . .

0 B0 B1




Γ =




A0 A1 0
A0 A1

A0

. . .

. . . A1

0 A0




. (8)

The formal definition of pass profile controllability
is as follows.

Definition 2. Let k∗ be an arbitrarily chosen pass
number which satisfies k∗ ≤ M, M = nα for a
discrete linear repetitive process described by (3)
and (4). Then such processes are said to be pass
profile controllable if there exists control input
vectors defined over 0 ≤ p ≤ α, 0 ≤ k ≤ k∗

which will drive the process to a pre-define pass
profile on pass k∗.

It has been shown in (Ga lkowski et al., 1998)
and (Rogers et al., 2002) that pass profile con-
trollability for processes described by (1) can be
completely characterized by use of the 1D equiv-
alent model. It is a routine exercise to conclude
that this is also true for processes described by
also holds for processes described by (3) and (4).
This is stated formally as follows.

Theorem 3. Discrete linear repetitive processes
described by (3) and (4) are pass profile control-
lable in the sense of Definition 2 if, and only if, the
matrix pair (Γ, Σ) is controllable in the 1D dis-
crete linear systems sense, or equivalently if, and
only if, matrix pair (A0,

[
B0 B1

]
)is controllable

in the 1D discrete linear systems sense.

4. QUADRATIC STABILITY AND
STABILIZATION

The stability theory (Rogers and Owens, 1992)
for linear repetitive processes which includes an
example described by (1) and (2) as a special
case consists of two distinct concepts but in the
vast majority of cases, it is the stronger of these
which is required. This is termed stability along
the pass and several equivalent sets of necessary
and sufficient conditions for processes described
by, for example, (1) and (2) to have this prop-
erty are known. In effect, stability along the pass
demands that bounded inputs produce bounded
sequences of pass profiles independent of the pass

length (here boundedness is defined in terms of the
norm on the underlying function space). Mathe-
matically, the way to treat this is to allow α → ∞.

In this paper we use another definition of stability
for discrete linear repetitive processes, including
those modelled by (3) and (4). This is termed
quadratic stabilization and here we will develop
it to the stage of producing computable stability
tests and control law design algorithms. The basic
idea (recall again the unique control problem for
these processes) is to define a quadratic Lyapunov
energy function for each pass with α → ∞, sum
over all passes to give the so-called total Lya-
punov function, and then quadratic stabilization
demands that the process dissipates this energy
from pass-to-pass.

The total Lyapunov function is given by

V (k) =

∞∑

p=0

xT
k (p)P̃ xk(p) (9)

where P̃ > 0, and

V (0) < ∞ (10)

and the following is the formal definition of
quadratic stability.

Definition 4. A discrete linear repetitive process
described by (3) and (4) is said to be quadratically

stable if, and only if, there exists a matrix P̃ > 0
such that

V (k + 1) < V (k), ∀ k ≥ 0 (11)

and (10) holds.

The following result gives an LMI based interpre-
tation of this property which forms the basis of the
analysis in the rest of this paper. Note that this
condition is sufficient but not necessary and hence
there is a degree of conservativeness associated
with its use. (In the case of, for example, dis-
crete linear repetitive processes described by (1)
and (2) it is known that, of the methods currently
available, it is only LMI based sufficient conditions
which allow control law design for stability and/or
performance as against just supplying conditions
for stability under control action.)

Theorem 5. A discrete linear repetitive process
described by (3) and (4) is quadratically stable
if

∑
∞

p=0
‖x0(p)‖ < ∞ and ∃ matrices P > 0 and

Q > 0 such that the following LMI is feasible

[
AT

0 (P + Q)A0 − P AT
0 (P + Q)A1

AT
1 (P + Q)A0 AT

1 (P + Q)A1 − Q

]
< 0. (12)

Proof From (9) and (3) we have that



V (k + 1) =

∞∑

p=0

xT
k+1(p)P̃ xk+1(p)

=

∞∑

p=0

(A0xk(p)+A1xk(p+1))T P̃ (A0xk(p)+A1xk(p+1))

=

∞∑

p=0

[
xT

k (p)AT
0 P̃A0xk(p) + xT

k (p)AT
0 P̃A1xk(p + 1)

+xT
k (p+1)AT

1 P̃A0xk(p)+xT
k (p+1)AT

1 P̃A1xk(p+1)

]

where P̃ = P + Q. Also (9) can be rewritten as

V (k) = xT
k (0)P̃ xk(0) +

∞∑

p=1

xT
k (p)P̃ xk(p)

= xT
k (0)P̃ xk(0) +

∞∑

p=0

xT
x (p + 1)P̃ xk(p + 1)

and we can now write

V (k) =

∞∑

p=0

[
xk(p)T Pxk(p) + xT

k (p + 1)Qxk(p + 1)

]

+ xk(0)T Qxk(0)=̂xk(0)T Qxk(0) + S(k).

Now, it is straightforward to see that the require-
ment of (12) is equivalent to Vk+1 < Sk and hence
(noting that xk(0)T Qxk(0) > 0∀xk(0) ∈ R

n) the
proof is completed by noting that the infinite sum
condition ensures (10) holds. 2

4.1 Stabilization by state feedback

Here we produce the first results on the control
of processes described by (3) and (4) under the
action of the following control law over k ≥ 0 and
0 ≤ p ≤ α

uk(p) = Kxk(p). (13)

In effect, this control law is state feedback applied
at the current point (also termed memoryless
in the repetitive process literature). Forming the
closed loop process and applying the result of
Theorem 5 to the resulting state space model
gives closed loop quadratic stability if there exists
a matrix K and matrices P > 0 and Q > 0 such
that the following LMI is feasible

[
(A0 + B0K)T (P + Q)(A0 + B0K) − P

(A1 + B1K)T (P + Q)(A0 + B0K)

(A0 + B0K)T (P + Q)(A1 + B1K)

(A1 + B1K)T (P + Q)(A1 + B1K) − Q

]
< 0. (14)

The following result now gives a sufficient condi-
tion for the existence of a quadratically stabilizing
control law of the form (13).

Theorem 6. A discrete linear repetitive process
described by (3) and (4) is quadratically stable
by a control law of the form (13) if ∃ matrices N,
Y > 0, Z > 0, and U > 0, such that the following
LMI is feasible

[
−Z 0 (A0Y + B0N)T

0 −U (A1Y + B1N)T

A0Y + B0N A1Y + B1N −Y

]
< 0 (15)

and

Z + U = Y. (16)

If (15) holds, then a stabilizing K in the control
law (13) is given by

K = NY −1. (17)

Proof An obvious application of the Schur’s com-
plement formula to (14) yields



−P 0 (A0 + B0K)T

0 −Q (A1 + B1K)T

(A0 + B0K) (A1 + B1K) −(P + Q)−1


 < 0.

Next, left and right multiply this last expression
by diag{I, I, (P + Q)}, multiply the result by
diag{(P +Q)−1, (P +Q)−1, (P +Q)−1}, and finally
make the substitutions

Z = (P + Q)−1P (P + Q)−1 > 0

U = (P + Q)−1Q(P + Q)−1 > 0

Y = (P + Q)−1 > 0 (18)

to obtain



−Z (∗) (∗)
0 −U (∗)

(A0 + B0K)Y (A1 + B1K)Y −Y


 < 0 (19)

and it is immediate from (18) that Z + U = Y .
Finally, use of (17) completes the proof. 2

5. NUMERICAL EXAMPLE

As a numerical example to demonstrate the ap-
plication of Theorem 6 consider the case when

A0 =

[
−0.26 −1.62
0.80 1.62

]
, A1 =

[
−1.90 −1.69
0.38 0.95

]
,

B0 =

[
−0.10 −1.25
−1.46 −0.86

]
, B1 =

[
1.22 0.02
0.92 1.96

]
.

In this case (15) holds, as do (16) and (17) with

Y =

[
1352.207 1921.414
1921.414 2863.086

]
, Z =

[
967.6176 1338.597
1338.5975 1928.818

]
,

U =

[
384.5895 582.816
582.8165 934.268

]
, N =

[
4579.7440 6792.544
−3582.4700 −5191.444

]
,

and the resulting control law matrix is given by

K =

[
0.3390 2.1449
−1.5697 −0.7598

]
.

The open loop pass profile sequence is shown in
Fig. 3 and the closed loop Fig. 4 with zero input
and reference vector respectively. The boundary
conditions were x0(p) = 1(p), 0 ≤ p ≤ 25, xk(α) =
0, k > 0.
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Fig. 3. Simulation for open loop process – x1
k(p).
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6. CONCLUSIONS

This paper has proposed a new model for dis-
crete linear repetitive processes to include terms
missing from current models but which can arise
in applications. Some fundamental results on the
systems theoretic properties of this new model
have also been developed. These relate to control-
lability and quadratic stability open and closed
loop.
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