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Abstract: In this article, a study of Finite Memory Observers on an unknown
input system is treated using augmented states. In this study, noised system is
processed and especially state noise due to the modelling of the system with
unknown input. After giving a mathematical overview on unknown input observers
and after writing Finite Memory Observers principles, results are given according
to fault indicators and especially in fault indicator tables. Copyright c© 2005 IFAC
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1. INTRODUCTION

Diagnosis is an important part of vehicle strate-
gies, and especially engine strategies: (Berton,
2004), (Fisher, 2004). In this article, diagnosis
take its place in a special part of engine strat-
egy: vehicle pollution control. Actually, a lot of
countries all around the world have held conven-
tions to reduce pollutant emissions, references of
Kyoto Protocol, (UNFCCC, 2002) can be given to
illustrate all these efforts. New developments have
been done by vehicle manufacturers to reduce
pollutant emissions; the Common Rail system has
been designed with all its control strategy.

In a great number of cases, a robust control strat-
egy is enough to assure pollution does not increase
up and system works well. But in a few cases,
control can be efficient if system information are
coherent compared to system state. Two main

cases can be considered. In the first case, sys-
tem modelling is well made, system parameters
are well known and will not change in time, so
FDI will be done on sensors and actuators. In
the second case, it is considered that sensors and
actuators are well calibrated and will never have
faults, so FDI will be done on model parameters.
In the case where control is not efficient, the
engine will pollute more and more and over time
can be responsible of engine destruction. Then
for better work, a supervision strategy should be
made to supervise the system and make sure that
if faults appear, the system will be able to detect
them, locate them and warn the driver to visit a
professional garage and also, in the same way, to
stop pollution.
A lot of papers treat diagnosis in several ways:
Chow-Willsky schemes (Chow, 1984), parity rela-
tions (Cocquempot, 2000), fault detection using



observers (Kratz, 2003), can be cited for model-
based methods; and in another way Principal
Component Analysis (PCA) (Gertler, 1999), and
statistic methods (Basseville, 1998).
In this article, a model structure is known so
model-based diagnosis methods can be applied,
and especially observers can be implemented to
compare measurements and estimated measure-
ments. In this case, Finite Memory Observers
method is used.
A first study on diagnosis of diesel injection sys-
tem has been done (Graton, 2004), this study
can be considered as a feasibility study. In fact,
the Resistant Torque in the previous paper was
supposed known, that is not a real configuration
because no measurement, and no available esti-
mation on Resistant Torque can be given to the
system.
So, the Resistant Torque in this case must be
taken as an unknown input of the system. This
new study gives some results in this way, we take
the Resistant Torque as an unknown input on
the Common Rail system. Several references can
be given to illustrate this approach: (Nikoukhah,
1994), (Gleason, 1990) and (Hou, 1992).

2. DIESEL INJECTION SYSTEM OVERVIEW

The aim of this section is to make a fault detection
on a system which has an unknown input. First
of all, system model description will be given as
a physical structure with differential equations.
In (Graton, 2004), Resistant Torque is supposed
known and constant. In this model, in equation
(2), Resistant Torque described by TR can not be
measured, and can not be estimated and it’s not
possible, in whatever manner so ever, to get an
idea of what it could be. In this section, a solution
will consist in defining the Resistant Torque as an
augmented state.

2.1 Continuous states: Differential Equation
Representation

The system representation in (Graton, 2004) is
given by those three differential equations:

Ṗrail(t) =KQp(t)−Qi(t)−Qd(t)−Ql(t) (1)

ω̇eng(t) = c7F (t)− c8TR(t)− c9ωeng(t) (2)

ṠIMV (t) = c10IIMV (t)− c11SIMV (t) + c12 (3)

where in (1), K is a constant, Prail represents the
Rail pressure [Pa], Qp the Pump flow [m3/s], Qi

the Injection flow [m3/s], Qd the Discharge flow
[m3/s] andQl the Leakage flow [m3/s]; in (2), ωeng

represents the Engine speed [rpm], F the mass

of fuel injected [mg/stroke] and TR the Resistant
Torque [N.m]; in (3), SIMV represents the Inlet
Metering Valve (IMV) Section [m2] and IIMV the
IMV current [A].

In the case of use, Resistant Torque TR includes
a lot of different torques and particularly the
road resistant torque that can not be measured
or estimated. It’s obvious that Resistant Torque
can not be constant, it is obliged to change/vary
in time especially in rises and descents. To con-
sider Resistant Torque variations in the system
model, one solution proposed is to augment the
model with one state corresponding to Resistant
Torque. This added state introduces the following
dynamics equation to previous equations (1, 2, 3)
written as follows:

ṪR(t) = 0 (4)

Resistant Torque is considered now as an addi-
tional state which has zero dynamic. State noises
and especially Resistant Torque noise will give
a uncertainty to the Resistant Torque; that one
can vary. It will be explained more in detail in a
further section.

The system equation can now be written like this:

Ṗrail(t) =
(

c1ωeng(t)
2 + c2ωeng(t) (5)

+c3)SIMV (t)− c4ωeng(t)F (t)

−c5Prail(t)
1.88 − c6

√

Prail(t)Disch(t)

ω̇eng(t) = c7F (t)− c8TR(t)− c9ωeng(t) (6)

ṠIMV (t) = c10IIMV (t)− c11SIMV (t) + c12 (7)

ṪR(t) = 0 (8)

2.2 Discrete states

Let the state vector be:

X(k) =









Prail(k)
ωeng(k)
SIMV (k)
TR(k)









where Prail, ωeng, SIMV and TR are described in
the previous subsection but they are all normal-
ized in percent [%] to avoid numerical problems.
Let the input vector be:

u(k) =





IIMV (k)
F (k)

Disch(k)





where IIMV , F and Disch are described in the
previous subsection. Command signals are mea-
sured.



The system so defined is:

X1(k + 1) =X1(k) + Te

[(

c1X2(k)
2 + c2X2(k)+

c3)X3(k)− c4X2(k)u2(k)

−c5X1(k)
1.88 − c6

√

X1(k)u3(k)
]

X2(k + 1) =X2(k) + Te [c7u2(k)− c8X4(k)−

c9X2(k)]

X3(k + 1) =X3(k) + Te [c10u1(k)− c11X3(k) + c12]

X4(k + 1) =X4(k)

where Te is the sample time and ci constant
parameters.

It has been seen in the previous section that the
unknown input is taken as an additional state
which has a zero-dynamic. Unknown input varia-
tions do not exist in such a case. This augmented
state can not be better modelled because of the
lack of information in it. To give it some possible
unknown variations, a standard deviation is added
in the additional state equation. This standard
deviation is modelled by random noise β(k); β(k)
is a zero-mean white Gaussian noise with a σ

standard deviation. Some simulation tests have
been done on the characterization of σ-parameter.
Tests with σ near unity seems a good choice in
simulation cases. A new characterization will be
done on the Common Rail System. That gives
dispersion values of additional state variation:

X4(k + 1) =X4(k) + β(k) (9)

The augmented state equation model can be writ-
ten in a stochastic case:

X(k + 1) =Aa(ρ(k))X(k) +Ba(ρ(k))u(k)

+fa(k) + wa(k) (10)

y(k) =CaX(k) + v(k) (11)

where Aa is the augmented state matrix, Ba the
input-state matrix, Ca the measurement matrix,
fa constant component due to linear interpola-
tion, wa and v state and measurement noises.

State noise and measurement noise are supposed
zero-mean white Gaussian and mutually uncor-
related, they are uncorrelated with initial state
x(0). Covariance matrix of state noise and mea-
surement noise are defined by W and V matrixes
respectively.

2.3 Output equation

As said previously, Resistant Torque can not be
in the measurement equation because it is un-
measurable. The system has no sensor on IMV

Section; only Rail Pressure and Engine Speed are
measured. In this study, the output equation is
given as:

y(k) =

(

1 0 0 0
0 1 0 0

)

X(k) (12)

where y(k) is a measurement vector.

3. FINITE MEMORY OBSERVERS

3.1 Definition of the state estimation

Let us start with the system mathematical repre-
sentation given by (10). The delayed state relation
X(k− i) can be expressed in terms of the current
state X(k) with the following statement:

X(k − i) =
1
∏

j=i

A−1

a (k − j)X(k)

−

i
∑

j=1





1
∏

j=i

A−1

a (k − l)





[Ba(k − j)u(k − j) + fa(k − j)]

The output equation becomes :

y(k − i) =C

1
∏

j=i

A−1

a (k − j)X(k)

−C

i
∑

j=1





1
∏

j=i

A−1

a (k − l)



 (13)

[Ba(k − j)u(k − j) + fa(k − j)]

Given: Y (k − L) =
[

y(k − 1)T . . . y(k − L)T
]T

, U(k−

L) and Y (k − L) are build in the same way; then
the system equation is:

Y (k − L) = ML(k)X(k)−HL(k)U(k − L)−
NL(k)F (k − L)

.

Isolating the current state variable from the above
equation, gives :
ML(k)X(k) = Y (k − L) +HL(k)U(k − L)+

NL(k)F (k − L)
This

equation can be solved by the least square
method, giving :

X̂L(k) = [MT
L (k)R−1

L (k)ML(k)]
−1MT

L (k)R−1

L

[Y (k − L) +HL(k)U(k − L)

+NL(k)F (k − L)] (14)

Remark 1. The Finite Memory Observers method
is a deadbeat observer. The convergence of x̂L(k)
will be released in L steps, where L is the window
length of the Finite Memory Observer.



3.2 Residual generation

Residual generation takes a great part in Fault
Detection and Isolation (FDI), it is important
in diagnosis. In (Graton, 2004), Residual Gen-
eration is made by comparison between the two
estimations of x(k) denoted xL1

(k) and xL2
(k)

respectively, that gives:

r1(k) = xL2
(k)− xL1

(k)

In a fault free case, this residual is close to
zero. Another Residual Generation can be done
easily by comparison between measurement and
an estimated measurement

r2(k) = y(k)− CxL1
(k)

Up to now, estimations by Finite Memory Ob-
servers are given thanks to all measurements.
Other observer subsystems can be built with a
new instrumentation configuration. It can be con-
sidered that estimations can be made thanks to
only several measurements. The necessary condi-
tion, to make this observer work, is given by the
system observability. In the physical approach on
Diesel Injection System, only the case with Rail
Pressure measurement on the observer input has
the observability condition. The case with only
Engine Speed measurement in the observer input
is not observable. All these Residual Generations
are called Observer Bank. They are drawn and
explained on the following figure.

Fig. 1. Schema of an Observer Bank

4. APPLICATION ON DIESEL INJECTION
SYSTEMS

In this section, the first part is dedicated to
comparing the observer to the physical model.
In the second part, residuals are computed and
analyzed.

4.1 Observer convergency

In a first step, observer convergency is tested
in the Fuel Injection Equipment (FIE) model
presented in section 2 with Resistant Torque as
an unknown input. According to Figure 2, it’s
obvious that the observer converges to physical
values. Focusing on Resistant Torque estimations,
the β variance choice gives different estimations.
After choosing a good variance to β, the Resistant
Torque is well estimated; noises are minimized.
It is a mean convergency to model values except
for two periods corresponding to an abrupt de-
celeration at time instant t = 20s and an abrupt
acceleration at time instant t = 40s. At these two
time instants, greater peaks can be seen.

Fig. 2. Observer efficiency in FIE model

4.2 Diagnosis results

In a second step, residual generation is studied in
two different observer configurations; the first one
with all measurements and the second one with
only rail pressure measurement in observer inputs.
In Figure 3.a, residuals 2 and 4 (corresponding
to comparison between two estimations on engine
speed and resistant torque) are noisy and close to
zero. All other residuals are closed to zero except
at time instants t = 20s and t = 40s. In Figure
3.b, all residuals are close to zero except at time
instants t = 20s and t = 40s. The raison that
residuals are not close to zero at these two time
instants is due to a bad system design. Three
different solutions are offered to avoid this bad
detection. The first one consists of switching in
a blind strategy during abrupt accelerations and
decelerations, but information will be lost. It is
not a professional solution. The second solution
is to put a greater state noise variance, but this
strategy gives worse estimations. The last solution
is to play with fault indicators as it is seen after.

Except during abrupt accelerations and deceler-
ations, when there is no fault on the system,
residuals are close to zero. When a fault occurs,



Fig. 3. Residuals in a free fault case (a) all mea-
surements (b) only rail pressure measurement
in observer inputs

a fault signal can be recognized, at time instant
t = 50s and t = 55s on Figures 4.2 and 4. Here the
sensibility to a rail pressure fault can be observed
on each residual, so a fault indicator can be built.
0:s describes the residual is not sensitive to fault,
1:s when it is, and X:s when it is but slightly.
A fault indicator table can be drawn up with
corresponding 0:s, 1:s and X:s.

Table 1. Residuals structure by FMO on
a Rail Pressure sensor fault

Rail Pressure Fault

Obs. 1 Obs. 2

Rail pressure 1 1

Residual Engine speed 0 X

r1 IMV Section X 1

Resistant Torque 0 X

Residual Rail Pressure 1 1

r2 Engine speed 0 1

Fault detection table can be done when a Engine
speed sensor fault or when an IMV Current or
a Fuelling actuator fault occur. Each fault gives
different fault detection tables. All these fault
detection can be summarized in the table below.

Fig. 4. Residuals in a Rail pressure sensor fault
case (a) all measurements (b) only rail pres-
sure measurement in observer inputs

4.3 Fault Isolation

The last step in this section is to do fault isolation.
The table 2 shows that an Engine speed sensor
fault is easily isolable compared to other indica-
tors. But it is harder to isolate a Rail pressure
sensor fault to a IMV Current actuator fault.
The two fault indicators are similar. X:s in fault
indicators can have a fault signification or a no-
fault signification; it depends on the threshold
choice, on fault amplitude and on noise amplitude.
So some configurations can give the same fault
indicator. A Fuelling actuator fault is totally non
detectable and non isolable.
From a second point of view, a hard acceleration
or deceleration indicator is easily isolable to fault
indicators; particularly thanks to residual r2. This
residual is {1;1} only during strong accelerations
and decelerations. The problem discovered in the
previous section with strong accelerations and de-
celerations is solved now thanks to fault indica-
tors.

5. CONCLUSION

The Fault Detection and Isolation (FDI) prob-
lem for FIE is treated in this paper. A realest



Table 2. Residuals structure by FMO on sensor and actuator fault

Fault on sensor Fault on actuator

Rail Pressure Engine Speed IMV Current Fuelling Accel. Decel.

Rail pressure 1 0 1 0 1 1

Residual Engine speed 0 1 0 0 0 0

r1 IMV Section X 0 X 0 1 1

Resistant Torque 0 1 0 0 0 0

Residual Rail Pressure 1 0 1 0 1 1

r2 Engine speed 0 1 0 0 1 1

Rail pressure 1 0 1 0 1 1

Residual Engine speed X 0 0 0 1 0

r
′
1

IMV Section 1 0 X 0 1 1

Resistant Torque X 0 0 0 1 0

Residual Rail Pressure 1 0 1 0 1 1

r
′
2

Engine speed 1 0 1 0 1 1

system modelling was done to allow Resistant
Torque variations. A solution is to make Resistant
Torque a augmented state. This augmented state
was taken with a zero mean dynamic. Actually,
Resistant Torque dynamic is a zero-mean white
Gaussian random noise. After a short study of
Finite Memory Observers, results are given ac-
companied by residual indicator table. This paper
gives mitigated results. In fact, in a first step, a
good detectability is done on each fault except a
Fuelling actuator fault. In a second step, Engine
speed fault isolation is relatively easy; strong ac-
celerations and decelerations are easily isolable to
real faults. On the other head, Rail pressure fault
and IMV current faults are hardly isolable.
Observer bank gives more fault indicators, and
makes an easiest FDI even if two fault indicator
can be roughly the same.
In this paper, model limits are encountered. Re-
sistant torque problem is solved but this implies
some FDI problems. Furthermore, problems like
the discharge can be solved if a new control is
given without boolean actuator; a new process
strategy is developed in FIE. Further study will
involve the injection system synchronizing to En-
gine speed to remove Resistant torque problems.
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