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Abstract: The sway control problem of the pendulum motion of the container crane 
hanging on the trolley, which transports containers from the container ship to the truck, 
is considered in this paper. In the container crane control problem, the main issue is to 
suppress the residual swing motion of the container at the end of the acceleration, 
deceleration or the case of that the unexpected disturbance input exists. For this problem, 
in general, the trolley motion control strategy is introduced and applied to real plants. In 
this paper, we consider a mass damper type of swing motion control system for a crane 
in which a small auxiliary mass is installed on the spreader. The actuator reacting against 
the auxiliary mass applies inertial control forces to the spreader of the container crane to 
reduce the swing motion in the desired manner. In this paper, we consider that the length 
of the rope is varied in the specified range and we design the anti-sway control system 
based on gain-scheduling approach. And, we investigate usefulness of the proposed anti-
sway system and evaluate system performance from experimental study. Copyright�
2005IFAC 
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1. INTRODUCTION 

 

The container crane is widely used to transport 
containers from the container ship to the trucks. But 
there is residual swing motion of the crane system at 
the end of acceleration and deceleration or in the 
case of that the unexpected disturbance input exists. 
For these systems, the trolley motion control 
technique is very well known strategy to suppress 
undesirable swing motion (Cheng and Li, 1993, 
Nomura et al, 1997). But it has some problems such 
as increase of fatigue and discomfort of the crane 
drivers who work for a long time. So, we introduced 
a new solution (Kim, 2002) to suppress swing 
motion as illustrated in Fig. 1, which is installed on 
the spreader of the crane.  
 
The suggested system is consists of a damper mass, a 
belt or ball-screw to transfer power to the moving 
mass and a motor to move a damper mass etc. In this 

system, the actuator reacting against the auxiliary 
mass applies inertial control forces to the crane 
system to reduce the undesirable swing motion.  
 
And, it is well known that the rope length in the 
control system design is should be considered. So, in 
this paper, we focus on the time-varying parameter, 
for example rope length change. For this, we assume 
that the rope length as a parameter which can be 
estimated in real time, is varying and apply the linear 
parameter varying(LPV) technique(gain-scheduling 
control) to the control system design problem. In this 
control system, the controller dynamics are adjusted 
in real-time according to the time-varying rope 
length. The experimental result shows that the 
proposed control strategy is shown to be useful to the 
case of varying rope length and robust to 
disturbances. 
 



 

     

 Fig. 1.  An active anti-sway control system (Kim, 
2002) 

 
 

2. MODELLING AND PROBLEM 
FORMULATION 

 
Fig. 2 shows dynamic model of the container crane 
as the controlled system considered in this paper. In 
this plant, if we suppose that the center of gravity of 
the spreader is equal to that of the damper mass, then 
the center ( Gx , Gy ) can be written as 
 

TG xlx += θsin , θcoslyG −=                 (1) 
 

And, if we denote that K is kinetic energy and V is 
potential energy, then they are given as following: 
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 (a) schematic diagram of controlled system 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
(b) geometrical interpretation of controlled system 

Fig. 2.  Dynamic model of the controlled system 

Here, to calculate dynamic equations of the 
controlled system using Lagrange’s dynamic 
equations:  
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where υ denotes disturbance and control inputs. 
 
In this study, we concentrate on the reduction of 
swing motion through the total process including 
moving and stop of the trolley. Of course, the end 
states of the loading and unloading process are 
considered. But, in this study we don’t consider the 
dynamics of the trolley, because it can be regarded as 
a kind of disturbance input. Then the linearized 
dynamic equations of the system are given by 
 

dTTglmMClmM −=++++ θθθ sin)()( 2 &&& (5) 
lfmgxT ddd += θcos                       (6) 

dddddd xkxCfmgxm −−+−= &&& θsin       (7) 
 

where, 
M : mass of container 
m : mass of damper mass 
l  : rope length  
C : damping constant 
T  : moment generated by disturbance 
dT  : moment generated by actuator 
g  : acceleration of gravity 
df  : horizontal force generated by actuator 
dC  : damping constant of actuator 
dk  : stiffness of actuator  
dx  : displacement of the moving-mass 

 
In this paper, we assume that θ  is small value and 
the spreader takes a levelling movement which 
means that the displacement of the spreader 
part θlx = . These facts denote that 1cos  ,sin ≅≅ θθθ , 
and the equations (5)~(7) can be rewritten as follows: 
 

dTTgxmMxCxlmM −=++++ )()( &&&          (8) 
lfmgxT ddd +=                           (9) 

dddddd xkxCfmgxm −−+−= &&& θ         (10) 
 
 

3. PARAMETER ESTIMATION 
 
3.1 Parameter estimation of the spreader 
 
To design anti-sway control system, we consider the 
reduction model of a container crane shown in Fig.  3 
and 4. For this system, at first, let us estimate the 
unknown parameters appeared in equation (8), which 
denote the dynamics of spreader part. Where, we use 
the initial response obtained from experiment as 
shown in Fig. 5. Using equation (8), the free vibration 
of the spreader part is described as follows: 
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Fig. 3.  Reduction model of the anti-sway control 

system 
 

  
Fig. 4.  Spreader part of the anti-sway control system 
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Then the equation (11) can be rewritten by following 
second order system: 
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From these facts, if we use the vibration period λ and 
damping ratio ρ in Fig. 5, then the following 
relations are obtained.  
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It means that if we calculate the vibration period and 
damping ratio from the free vibration response as 
 

 Fig. 5.  Free vibration response of the spreader 
 

illustrated in Fig. 5, then the unknown parameter is 
estimated.    
 
In the result, an unknown parameter C(damping 
constant) is calculated as 005324.0=C  using some 
known and defined parameters where the rope length 
is 0.36[m]. 
 
3.2 System representation of the actuator system 
 
As illustrated in the previous section, anti-sway 
control system is installed on the spreader part as 
shown in Fig. 4. The actuator part is made up with 
motor, belt and other apparatus. Then, the dynamical 
equation is described by the equation (6) and two 
unknown parameter are calculated as following : 
 

00095.0    ,5865.1 == dd kC                 (15) 
 

So, the step responses of the actuator system 
obtained from simulation and experiment are shown 
in Fig. 6.  
 

 Fig. 6.  Step responses of actuator system 
                                                                                                                                                                                                                                                                                
3.3 Overall system representation  
 
In the result, the state equation for the controlled 
system is given by 
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where, the states [ ] ,Tddp xxxxx &&= vu= (input 
voltage to the motor), Tw=  and 
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Where mK  is the motor torque constant and it is 
given by mK =150. 
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4. CONTROLLER DESIGN AND EXPERIMENT 
 
Gain scheduling is a widely used technique for 
controlling certain classes of nonlinear or linear 
time-varying systems. Rather than seeking a single 
robust linear time invariant(LTI) controller for the 
entire operating range, gain scheduling consists in 
designing an LTI controller for each operating and in 
switching controller when the operating conditions 
change. This section presents systematic tools to 
design gain-scheduled ∞H controllers for linear 
parameter-dependent systems. 
 
The synthesis technique discussed below is 
applicable to affine parameter-dependent plants with 
equations, in other words LPV system. 
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where 
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is a time-varying vector of physical parameters and 

 )( ),( ),( ),( 1111 ⋅⋅⋅⋅ DCBA are affine functions of )(tl . This 
is a simple model of systems whose dynamical 
equations depend on physical coefficients that vary 
during operation. When these coefficients undergo 
large variations, it is open impossible to achieve high 
performance over the entire operating range with a 
single robust LTI controller. Provided that the 
parameter values are measured in real time, it is then 
desirable to use a controller that incorporates such 
measurements to adjust to the current operating 
conditions. Such controllers are said being scheduled 
by the parameter measurements. This control 
strategy typically achieves higher performance in the 
face of large variations in operating conditions.  
 
However, in this paper we consider a gain-scheduled 
control synthesis based on ∞H -control approach. 
At first, the parameter dependent plant (18) can be 
rewritten as following 
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where x : states, u : control inputs and y : controlled 
outputs. 2w  and 2z  are signals to evaluate the 
control performance, 1w  and 1z are signals to 
consider how the time-varying parameter )(t∆  
affects the control system, where )(t∆  is the time-
varying parameter which is assumed to be described 
by    

{ } qq
11  1 : ),,(diag: ×⊂≤= Riqssq II δδδ L∆       (22) 

 
but may be undefined exactly. For this uncertain 
plant with ∆∈∆ )(t , we design a controller such that 
the worst case closed-loop RMS gain from 2w  to 2z  
does not exceed some level 0fγ . In this problem, if 
there is no information about )(t∆  except ∆∈∆ )(t , 
it is considered just as a robust control problem. But, 
in this paper, we consider that )(t∆ is the rope length 
which can be estimated in real time. Therefore, we 
can use the controlled outputs as well as the 
information about the time-varying parameter )(t∆  
to produce the control signals. Then a controller 
suitable for this conception is given by    
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In other words, it is said that the structure of the 
controller is same as that of the plant as illustrated in 
Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Gain-scheduling control system 
   
From these facts, a gain-scheduling problem can be 
described as following.  
 
[Gain-Scheduling Problem] Design a controller 

)(sC  satisfying the following properties : 
�the closed-loop system is stable for all admissible 
parameter trajectories )(t∆   
�the worst-case closed-loop 2L  gain from signal 2w  
to 2z  does not exceed some level 0fγ and this 
constraint is denoted by 
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where γγ prp . 
 
From these, the expression for the control system Fig. 
7 is rewritten by )(ˆ sP  the new state space realization 
and the uncertainty )(ˆ t∆ : 
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It is verified that this synthesis problem can be 
reduced to the robust control problem.   
 
In this chapter, we evaluate the system performance 
and show the usefulness of the controlled system by 
the simulation and experimental studies.  
In this paper we consider that the rope length l is 
varied in the specified range : 
 

][75.0][25.0 mlm ≤≤  
 

Considering the fact the ship speed l is an uncertain 
parameter such that it can be denoted by  
 

1    ,/1 0 ≤∆∆+= ull α                (27) 
 

where, 0l is the nominal and 
uα is a weighting factor 

used in controller design process. It is a synthesis 
technique to follow the affine parameter-dependent 
representation in equation (18). 
 
Using equations (18)-(27), the controller is 
calculated as follows: 
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Using this controller, the simulation and 
experimental results for the designed reduction 
model as shown in Fig. 3 and Fig. 4 can be obtained.       
At first, let us show the initial responses of the open 
and closed-loop systems where the lope length is 
0.5[m]. Fig. 8 illustrates the initial response of open-
loop system(uncontrolled case) and Fig. 9 shows the 
controlled case. In Fig. 9, we can see that the 

vibration of spreader is effectively suppressed by 
moving the damper mass as shown in (b) of Fig. 9.  
 
To check the robustness to the disturbance input, let 
us show the system responses. Where we assume that 
the rope length varies as the transition pattern of (a) 
of Fig. 10 and Fig. 11 respectively. In these 
conditions, Fig. 11 shows the disturbance response of 
the uncontrolled case, and Fig. 11 is the controlled 
case. Especially, in Fig. 11, (b) illustrates the 
displacement of spreader, where the step type 
disturbance input to the plant irregularly. Comparing 
these two cases, we can see that good control 
performance is obtained in the existence of  
disturbance. 
 
From the simulation and experimental results, it is 
clear that the robustness to the disturbance input and 
good control performance are obtained. Also, the 
usefulness of the proposed anti-sway system is 
verified and the possibility that the considered 
system can be easily applied to the real plants is 
certified in a sense.  
 

 Fig. 8.  Initial response(open-loop system),  
]m[5.0=l  

 

 (a) displacement of spreader 

 (b) displacement of moving mass 
Fig. 9.  Initial response(closed-loop system), 

]m[5.0=l    



 

     

 

 (a)  rope length transition pattern 

 (b) displacement of the spreader 
Fig. 10.  Disturbance response when the rope length 

varies(open-loop system) 
 

 (a) rope length transition pattern 

 (b) displacement of moving mass 
Fig. 11.  Disturbance response when the rope length 

varies(closed-loop system) 
 
 

5. CONCLUDING REMARKS 
 

In this study, a new type of swing motion control 
system for the crane has been considered and the 
usefulness of the considered system has been verified 
by simulation and experimental studies. This control 
system can restrain the undesirable swing motion 
which causes many problems such as increase of 

fatigue and discomfort of the crane drivers who work 
for a long time. So, it is verified that the undesirable 
swing motion can be suppressed efficiently through 
the reaction of moving the damper mass on the 
spreader. Especially, in this paper we have 
considered that the rope length varies and designed a 
control system to achieve desirable control 
performance and preserve the system stability based 
on the gain-scheduling approach.  
 
The advantage of this system is that the system can 
be easily applied to the real system and desirable 
anti-sway effect can be obtained.  
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