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Abstract: Singular and non-singular control trajectories of agricultural and (bio) chemical 
processes may need to be recalculated from time to time for use in closed-loop optimal 
control, because of unforeseen changes in state values and noise. This is time consuming. 
As an alternative, in this paper, numerical, nonlinear, static state feedback laws are 
developed for optimal control on the singular arc that can be applied in closed-loop 
without the need for iteration. The efficacy of these laws is demonstrated in an example. 
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1. INTRODUCTION 

 
Singular and non-singular control trajectories of 
agricultural, and (bio) chemical (semi-)batch 
processes may need to be recalculated in closed-loop 
optimal control, because of unforeseen changes in 
state values and noise. This can be achieved by using 
an iterative optimisation algorithm (Bequette, 1991). 
Iteration, however, is time consuming. It is, 
therefore, attractive to look for non-iterative 
algorithms.  
 
An interesting non-iterative closed-loop optimisation 
procedure was developed by Palanki, et al. (1993) 
and Rahman and Palanki (1996). They proposed to 
first determine in open loop the sequence of singular 
and non-singular intervals and accompanying 
switching times. Next, they develop symbolic static 
state feedback laws for the singular trajectories, 
while during the non-singular trajectories the 
minimum or maximum control values are used.  
 
Rahman and Palanki recommend using symbolic 
manipulation software such as MAPLE or 
MATHEMATICA for the development of static state 
feedback laws, because of the need to compute a 
large number of Lie-derivatives. However, in case of 
complex systems, symbolic manipulation leads to 
expressions that are difficult to handle. Numerical 

derivation of optimal static state feedback laws is 
therefore more convenient. 
 
Magana Jimenez (Magana Jimenez, 2002) developed 
a MATLAB5.3-ADIFOR2.0-FORTRANcompaq6.0-
CONTROL (MAFC) software package that is able to 
synthesize numerical static state feedback laws for 
nonlinear systems. In the synthesis of these laws 
automatic differentiation is incorporated to compute 
the necessary Lie-derivatives numerically.  
 
In order to be able to use this software package for 
optimal control, the optimisation problem needs to be 
cast in a form of a control-affine non-linear system. 
This paper shows how this can be done, and 
subsequently describes how numerical static state 
feedback laws for singular optimal control 
trajectories can be obtained using MAFC. The 
novelty of this approach lies in developing state 
feedback laws for (singular) optimal control by using 
a software package that is designed for the synthesis 
of numerical static state feedback laws for non-linear 
systems. It makes it possible to implement closed-
loop optimal control for complex agricultural, and 
(bio) chemical systems with singular trajectories, 
which is the main motivation for this research. 
 
The outline of this paper is as follows. First the 
optimal control problem is cast in the form of a non-



 

     

linear system. Next, the static state feedback laws as 
synthesized by the MAFC software package are 
presented. Finally, an example is presented that 
demonstrates that singular trajectories generated by a 
numerical static state feedback law are comparable to 
singular trajectories generated open-loop by a 
gradient method. It also will demonstrate that a 
numerical static state feedback law is able to adjust 
singular optimal control trajectories in response to 
unforeseen changes in state values. 
 
 

2. OPTIMAL CONTROL PROBLEM 
 
The state-equation of the optimisation problem 
considered here is:  
 

( ) ( ) ( )11
... mm

x f x g x u g x u= + + +     0 0( )x t x=    (1) 

 ,   n mx u∈ℜ ∈ℜ                 
 
The performance equation that has to be minimised 
is: 
 

( )( )fJ x tφ=   ( )f fx t x=           (2) 

 
In these equations ( )x t  is the system state vector 
and u1(t),…, um(t) are control inputs. The 
functions ( )f x , and ( )

1
g x ,…., ( )

m
g x  are smooth 

system state vector functions and ( )( )fx tφ  is the 

final weighting function.  
 
Note that the optimal control problem is control-
affine and written in the Mayer-formulation (Bryson, 
1999; Stengel, 1994), which means that the problem 
is an end-point optimal control problem. These are 
not restrictive assumptions, because any non-linear 
optimisation problem can be cast in the form of 
equations 1 and 2 by introducing an additional state 
differential equation for the running costs function 
L(x,u) of the performance equation: 
 

( ) ( )
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,
ft

f
t
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and by introducing additional state-differential 
equations for inputs that make the optimisation 
problem not control-affine, for example: 
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In these equations u is the additional control state 
vector, v(t) is the new control and ( )f x and ( ),g x u  
are adjusted smooth system state vector functions.  

 
 

3. NON-LINEAR SYSTEM REPRESENTING THE 
OPTIMAL CONTROL PROBLEM 

 
The control-affine optimisation problem, consisting 
of equations 1 and 2 needs to be (re)formulated as a  
non-linear system of the form  
 

( ) ( ) ( )11
.... mm

x f x g x u g x u= + + +    0 0( )x t x=    (5) 

( )y h x=                                     (6) 
 

in order to be able to  synthesize static state feedback 
laws by the MAFC-software package. This is done 
by writing a Hamiltonian system for the optimal 
control problem (Schaft, 1984):  
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In this system, x  is a new system state vector 
consisting of the system state vector ( )x t  and a 
vector of Lagrange multipliers (costates) λ  with an 
equal length as the length of the system state vector 

( )x t . The vector y  is the output vector and 

( ) ( ) ( )
1

,  ,....,
m

f x g x g x  and ( )h x  are smooth 
system state vector functions.  
 
Controlling the outputs h of this Hamiltonian system 
with initial values for 0x  and 0λ  such that the 
outputs are set to zero is equivalent to fulfilling the 
necessary optimality conditions of the original 
optimal control problem: 
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The equivalence holds if the initial values for 0λ  are 
selected in such a way that the optimality condition 
for ( )ftλ  is also met. Values for 0λ are obtained by 
solving the optimal control problem (equations 1 and 
2) open-loop as will be discussed in section 5. 
 
 

4. NUMERICAL STATIC STATE FEEDBACK 
LAWS SYNTHESIZED BY MAFC 

 
The MAFC software package, developed by Magana 
(2002) is able to synthesize numerical static state 
feedback laws, u  for nonlinear Hamiltonian system 
presented by equations 5 to 10, and thus enables the 
synthesis of static state feedback laws that perform 
singular optimal control.  In these laws the vectors 

( )k x  and ( )l x  are smooth vector functions and the 
vector 

sp
y is the vector of output setpoints that acts 

as the new vector of inputs: 
 

( ) ( ) spu k x l x y= − +                        (15) 
 
The vector functions ( )k x  and ( )l x  are such that 
the closed loop system is decoupled, which means 
that individual input-output channels are separated 
(Isidori, 1989; Nijmeijer and Schaft, 1990). This 
property is inherent to the theory of the synthesis of 
static state feedback laws. Each output is also forced 
to follow an r-th order linear exponential trajectory if 
this output is not at its setpoint value. This trajectory 
is defined by (Kravaris, et al., 1997; Magana 
Jimenez, 2002): 
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where 1,1ε ,…., ,m mr rε are pre-selected constant tuning 
parameters, assigning specific eigenvalues to the 
output dynamics. The parameters r1,….,rm  are 
relative degrees, i.e. the smallest integers such that 
the rth derivative of the output y with respect to t 
depends explicitly on the input u . 
 
The vector functions ( )l x  and ( )k x  are defined by 
(Magana Jimenez, 2002): 
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In these equations and 1 1r

fL − ,…, 1mr
fL − are Lie-

derivative operators (Isidori, 1989; Nijmeijer and 
Schaft, 1990) and C is the following matrix: 
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Static state feedback laws cannot be obtained if the 
C-matrix is singular. Matrix singularity will occur if, 
among other things there is no rth time-derivative of 
the output y that explicitly depends on the input u . 
 
Note that Palanki, et al. (1993) develop symbolic 
static state feedback laws by eliminating the costates, 
thereby eliminating possible unstable costate-
dynamics. These laws consist of Lie-brackets instead 
of Lie-derivatives. In contrast, MAFC calculates 
numerical laws using Lie-derivatives. 
 
More details on static state feedback laws can be 
found in Magana (2002), Isidori (1989) and 
Nijmeijer and Van der Schaft (1990). 

 
 

5. SYNTHESIS AND APPLICATION GUIDE OF 
THE STATIC STATE FEEDBACK LAWS 

 
Following Palanki, et al. (1993) and Rahman and 
Palanki (1996) static state feedback laws are 
developed and applied in closed-loop optimal control 
according to the following procedure: 
 
1. Calculate open-loop optimal state, costate, input 

and output trajectories for the optimal control 
problem, using optimisation methods such as 
gradient methods presented by Bryson (1999) 
and De Graaf (2004). 

2. Determine which optimal trajectory intervals are 
singular and monitor the switching times that 
mark each beginning and end of these intervals. 
Also determine the state and costate values at the 



 

     

each switching time that marks the beginning of 
an interval. 

3. If needed, make the optimal control problem 
control-affine. Then (re)formulate the control-
affine optimal control problem in a Hamiltonian 
nonlinear system according to equations 5 to 10.  

4. Calculate relative degrees of this nonlinear 
system at each switching time that marks the 
beginning of a singular optimal trajectory 
interval, using MAFC. Check whether the 
relative degrees change or whether the C-matrix 
is singular somewhere in this singular optimal 
trajectory interval. If this happens then stop, as 
static state feedback laws cannot be obtained in 
this case. 

5. Calculate the static state feedback laws, using 
MAFC. 

6. While on-line, observe the states, compute the 
costates by simulating the process on-line with 
equations 5 and 6, and apply in closed-loop the 
static state feedback laws for singular intervals 
and maximum or minimum input values for the 
non-singular intervals. Switch from singular tot 
non-singular intervals or vice versa at the 
switching times determined in open loop. 

 
 
6. VALIDATION OF STATIC STATE FEEDBACK 

LAWS 
 
An example taken from Srinivasan et al. (2000) is 
used for two validation objectives. The first objective 
is to demonstrate that singular trajectories generated 
by a numerical static state feedback law are 
comparable to singular trajectories generated open-
loop by a gradient method presented by De Graaf 
(2004). The second objective is to demonstrate that a 
numerical static state feedback law is able to adjust 
singular optimal control trajectories in response to 
unforeseen changes in state values.  
 
The synthesis and application guide, presented in 
section 5 was used to synthesize and apply the static 
state feedback law.  
 
Srinivasan et al. (2000) calculated optimal 
trajectories for one input of a non-linear system 
consisting of two simultaneous chemical reactions 
taking place in a jacket batch reactor. The optimal 
control problem is described by: 
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        (21) 

 
The performance equation that has to be minimized 
is: 

( )4 fJ x t=            (22) 
 
The initial state values are in table 1. The parameter 
values are in table 2. The input u and the final state 
values of x2 and x5 are constrained. These constraints 
are in table 3.  
 

Table 1: Initial state values 
 
x1 0.72  x4 0  
x2 0.05  x5 0  
x3 1    
 

Table 2: Parameter values of the system 
 
p1 0.053  p3 5  
p2 0.256  p4 0.128  
 

Table 3: Constraints on inpus u and final values of 
states x2 and x5 

 
 lower 

bound 
upper 
bound 

 lower 
bound 

upper 
bound 

u(t) 0 1.0·10-3    
x2(tf)  0.025  x5(tf)  0.15  
 
Step 1: Optimal trajectories of the states, costates, 
input and output were calculated using the ACW-
gradient-gradient algorithm (de Graaf, 2004). These 
trajectories are plotted with dotted lines (----) in 
figures 1 to 4 and figures 5 to 8. 
 
Step 2: These figures show that the optimal control 
trajectory consist of a singular optimal control 
trajectory in the time interval 25 tot 200 minutes, 
because outside this time-interval the input is on its 
upper or lower bound. A static state feedback law 
may define this singular optimal control trajectory. 
The state and costate values at 25 minutes are in table 
4. 
 

Table 4: State and costate values at 25 minutes 
 
x1 0.6422   λ1 -0.5882  

x2 0.0772   λ2 0.0012  

x3 1.0244  λ3 -0.3619  

x4 -0.0622  λ4 1.0000  

x5 0.0149  λ5 0.7478  

 
Step 3: There was no need to make the optimal 
control problem control-affine because the problem 
is already control-affine. The problem was 
reformulated as a Hamiltonian non-linear system 
according to equations 5 to 10. This system is not 
shown here. 
 
Step 4: The relative degree of this system at 25 
minutes is equal to 2 and the C-matrix is non-
singular in the time interval 25 tot 200 minutes. This 
means that a static state feedback law based on a 
relative degree of 2 is applicable for this singular 
optimal control trajectory interval. 
 



 

     

Step 5 and 6: The static state feedback law was 
calculated and applied to calculate singular 
trajectories of the states, costates, input and output in 
three simulated closed-loop optimal control 
experiments: 
 
a. To meet the first validation objective, an 

experiment was carried out in which state 
trajectories were simulated and offered as 
artificial observed state trajectories to the static 
state feedback law for the closed-loop 
calculation of state, costate, input and output 
trajectories. These trajectories are plotted with 
solid lines () in figures 1 to 4. 

b. For the second validation objective experiment a 
was repeated but in this experiment the state 
trajectories were perturbed deliberately by a 
20%-increase of the third state at 100 minutes, 
thereby simulating an unforeseen change in a 
state value. Closed-loop calculated state, costate, 
input and output trajectories of this experiment 
are plotted with solid lines () in figures 5 to 8. 

c. To further substantiate the second validation 
objective, experiment b was repeated, but now 
the singular optimal control trajectory calculated 

 

in open loop was applied instead of controlling 
the system by the static state feedback law. 
These trajectories are plotted with solid lines 
marked with dots (•) in figures 5 to 8. 

 
 

7. RESULTS 
 
Figures 1 to 4 show a good resemblance between the 
state, costate, output and input trajectories calculated 
in open loop and those obtained with the static state 
feedback law. 
 
Figures 5 to 8 show that in experiment b the static 
state feedback law changes the singular optimal 
control trajectory when there is a 20%-increase of the 
third state at t=100, which leads to changes in state 
and costate trajectories. The output, being dH/du, 
correctly returns to its setpoint value zero (Figure 7). 
The application of the open-loop calculated optimal 
control trajectory in experiment c leads to an output 
deviation from its setpoint after 100 minutes, which 
means that the state, costate and input trajectories are 
not optimal. This is confirmed by the final value of 
the goal function, which is the fourth state here. Its 
value is higher than the one in experiment b. 
 

 

Fig. 1 Optimal state trajectories calculated open-
loop (---) and closed-loop in experiment a ().  

Fig. 3 Optimal output trajectories calculated open-
loop (---) and closed-loop in experiment a ().  

 

Fig. 2 Optimal costate trajectories calculated open-
loop (---) and closed-loop in experiment a (). 

Fig. 4 Optimal control trajectories calculated open-
loop (---) and closed-loop in experiment a (). 



 

     

Fig. 5 Optimal state trajectories calculated open-
loop (---) and closed-loop in experiments b () 
and c (•). 

Fig. 7 Optimal output trajectories calculated open-
loop (---) and closed-loop in experiments b () 
and c (•). 

Fig. 6 Optimal costate trajectories calculated open-
loop (---) and closed-loop in experiments b () 
and c (•). 

Fig. 8 Optimal control trajectories calculated open-
loop (---) and closed-loop in experiments b () 
and c (•). 

 
8. CONCLUSION 

 
A numerical development of static state feedback 
laws for singular optimal control trajectories using 
MAFC is presented in this paper. An example 
demonstrates that singular trajectories generated by a 
numerical static state feedback law are comparable to 
singular trajectories generated open-loop by a 
gradient method. It also demonstrates that a 
numerical static state feedback law is able to adjust 
the singular optimal control trajectories in response 
to unforeseen changes in state values.  
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