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1. INTRODUCTION

Deterministic counterparts of discrete-time Kal-
man filters for linear systems are known in the
literature since the early works of Bertsekas and
Rhodes in the seventies. The deterministic fil-
ter introduced in (Bertsekas and Rhodes, 1971)
provided a state estimate in the form of an el-
lipsoidal set of all possible states that are con-
sistent with the given measurements and a de-
terministic additive description of the process
noise. Further early contributions in this field
were due to (Schweppe, 1973), whose ideas were
later developed by (Chernousko, 1993; Durieu et
al., 2001; Kurzhanski and Valyi, 1996; Maskarov
and Norton, 1996), among many others. However,
all these contributions deal essentially with the
linear filtering problem, or with a nonlinear ver-
sion of it which is based on local linearization, in
the same spirit of the so-called Extended Kalman
Filter (EKF).

It is well known (see for instance the discussion
in (Einicke and White, 1999)) that for nonlin-

1 This work has been supported by FIRB and PRIN funds
from the Italian Ministry of University and Research.

ear systems an approach completely based on
local linearization, such as the EKF, may lead
to poor estimation performances. In this paper,
we develop an efficient computational technique
for set-membership nonlinear filtering which takes
into explicit account the second order local infor-
mation of the system. This additional structure
is expected to improve the filter performance in
all applications where strong nonlinearities are
present, such as in localization problems arising
in mobile robotics, see for instance (Fabrizi et
al., 1998; Jetto et al., 1999) and (Di Marco et
al., 2004).

The filter recursions developed here are built
upon the results on uncertain linear equations
(ULE) that appeared recently in (Calafiore and
El Ghaoui, 2004). According to this theory, the
numerical complexity of each filter step is of the
order of n3.5, and it is thus comparable to the
complexity of the standard Kalman filter iterates.

In the next sections, we develop all the techni-
cal details of the second-order filter recursions,
whereas we leave the numerical experiments to a
subsequent work. For space reasons, the presenta-
tion is kept “dry” and rather technical. The paper



is organized as follows: Section 2 contains some
preliminaries on the representation of quadratic
functions, and reports a key result on uncertain
linear equations; Section 3 sets up the filtering
problem, and Sections 4 and 5 provide the key
results on the prediction and update steps of the
filter, respectively. Section 6 finally draws some
conclusions.

2. PRELIMINARIES

2.1 Quadratic functions in linear fractional form

Consider a quadratic function of the form

ϕ(δx, δu, δν) =

ϕ̄ + Axδx + Auδu + h(δx, δu) + Aνδν

where δx ∈ Rnx , δu ∈ Rnu , δν ∈ Rnν , and the i-th
component of h(δx, δu) is

hi(δx, δu) .=
[

δx

δu

]T [
H(i)

xx H(i)
xu

H(i)
ux H(i)

uu

] [
δx

δu

]

and where the inner matrix in the above expres-
sion is symmetric. When useful for the sake of
compactness of the formulas, we shall use the
notation XY ] to denote the product XY XT . The
previous expression is written equivalently as

hi(δx, δu) =

δx
T (H(i)

xxδx + H(i)
xuδu) + δu

T (H(i)T
xu δx + H(i)

uuδu)

and hence

h(δx, δu) =




h1(δx, δu)
.
..

hn(δx, δu)


 =

= diag (δx
T , . . . , δx

T )







H
(1)
xx

..

.

H
(nx)
xx


 δx +




H
(1)
xu

..

.

H
(nx)
xu


 δu




+ diag (δu
T , . . . , δu

T )







H
(1)T
xu

...

H
(nx)T
xu


 δx +




H
(1)
uu

...

H
(nx)
uu


 δu




= ∆x(Hxxδx + Hxuδu) + ∆u(Huxδx + Huuδu)

where we defined

∆x
.= diag (δx

T , . . . , δx
T ) ∈ Rnx,n2

x

∆u
.= diag (δu

T , . . . , δu
T ) ∈ Rnx,nxnu

Hxx
.
=




H
(1)
xx

.

.

.

H
(nx)
xx


 ∈ Rn2

x,nx ; Hxu
.
=




H
(1)
xu

.

.

.

H
(nx)
xu


 ;

Hux
.
=




H
(1)T
xu

.

.

.

H
(nx)T
xu


 ∈ Rnxnu,nx ; Huu

.
=




H
(1)
uu

.

.

.

H
(nx)
uu




with Hxu ∈ Rn2
x,nu , Huu ∈ Rnxnu,nu . Summariz-

ing, we have

ϕ(δx, δu, δν) = ϕ̄ + Axδx + Auδu + Aνδν (1)

+∆x(Hxxδx + Hxuδu) + ∆u(Huxδx + Huuδu).

The following lemma holds.

Lemma 1. (LFT representation). The function ϕ
(δx, δu, δν) is represented by the feedback connec-
tion

[
ϕ
z

]
=




ϕ̄ Ax Au Inx Inx Aν

1 0 0 0 0 0
1 0 0 0 0 0
0 Hxx Hxu 0 0 0
0 Hux Huu 0 0 0
1 0 0 0 0 0




[
1
w

]
(2)

w = ∆z (3)

where

∆ .= diag (δx, δu,∆x, ∆u, δν). (4)

Equivalently,

ϕ(δx, δu, δν) = ϕ̄ + L∆(I −H∆)−1R (5)

where
[

ϕ̄ L
R H

]
can be deduced from the partition

in (2). Notice that (I −H∆) is always invertible,
i.e. the LFT is always well-posed.

Proof. The representation is easily constructed
as follows. First, write (1) as

ϕ = ϕ̄ + Axw1 + Auw2 + w3 + w4 + Aνw5

where we defined w1 = δxz1, w2 = δuz2, w3 =
∆xz3, w4 = ∆uz4, w4 = δνz5; with the zi’s
given by z1 = 1, z2 = 1, z3 = Hxxw1 + Hxuw2,
z4 = Huxw1 + Huuw2, z5 = 1. Then, (2), (3) are
simply a restatement in vector format of the above
positions. Finally, substituting (3) into (2), we
have that ϕ = ϕ̄+L∆z, and z = R +H∆z. From
this latter expression we get z = (I − H∆)−1R,
which, substituted in the former, yields (5). 2

Definition 1. (Scaling subspace). Let ∆ denote
the subspace of matrices having block-diagonal
structure. (e.g. the structure in (4)). The scaling
subspace associated to ∆ is defined as

S(∆) = {(S, T ) : ∀∆ ∈ ∆, S∆ = T∆}.

It is easy to verify that the scaling subspace for the
structure specified by (4) is constituted of matrix
pairs (S, T ) of the form

S = diag (λ1Inx , λ2Inu , Sx, Su, λ3Inν )

T = diag (λ1, λ2, Sx ⊗ Inx , Su ⊗ Inu , λ3)



where Sx = ST
x ∈ Rnx,nx , Su = ST

u ∈ Rnu,nu , and
⊗ denotes the Kronecker tensor product. 2

2.2 Uncertain Linear Equations

Let A ∈ Rm,n, Y ∈ Rm, L ∈ Rm,np , RA ∈ Rnq,n,
RY ∈ Rnq , H ∈ Rnq,np , and define

[A(∆) Y(∆)] = (6)

[A Y] + L∆(I −H∆)−1[RA RY ],

where ∆ ∈ ∆1, with

∆1
.= {∆ ∈ ∆ ⊆ Rnp,nq : ‖∆‖ ≤ 1}.

Let further this linear fractional representation
(LFR) be well-posed over ∆1, meaning that
det(I −H∆) 6= 0, ∀∆ ∈ ∆1.

Given the data description in (6), we have the
so-called uncertain linear equations (ULE) in the
variable x

A(∆)x = Y(∆).

The set X defined below represent the set of all
possible solutions (if any) to the above ULE

X .= {x : A(∆)x = Y(∆), for some ∆ ∈ ∆1}.

To the uncertainty structure described by ∆, we
associate a scaling pair (S, T ) ∈ S(∆), as in
Definition 1.

The following theorem provides conditions under
which the set X is contained in a bounded ellipsoid
E , and exploits these conditions to determine a
minimal (in the sense of the trace size measure)
ellipsoid containing the solution set X .

Theorem 1. (Calafiore and El Ghaoui, 2004). Let

Ψ .= [A L y], Υ .=
[

RA H RY
0np,n Inp 0np,1

]
,

Ω(S, T ) .= ΥT

[
T 0
0 −S

]
Υ.

Let further the orthogonal complement Ψ⊥ be

chosen as Ψ⊥
.=

[
Ψ⊥1 ψ⊥2

0 · · · 0 −1

]
, where Ψ⊥1 is an

orthogonal complement of [A L], and ψ⊥2 is any
vector such that [A L]ψ⊥2 = Y. (If no such ψ⊥2

exists, then the solution set is empty). If there
exist (S, T ) ∈ S(∆), S º 0, and P = PT , x̂ such
that the LMI[

P [I 0 x̂]Ψ⊥
ΨT
⊥[I 0 x̂]T ΨT

⊥ (diag (0, 0, 1)− Ω(S, T ))Ψ⊥

]
º 0 (7)

is feasible, then the ellipsoid E(P, x̂) contains the
solution set X .

2 For instance, if nx = 2, we have Sx =

[
s11 s12

s12 s22

]
, and

Sx ⊗ Inx is equal to

[
s11I2 s12I2
s12I2 s22I2

]
.

A minimal size ellipsoid can hence be determined
by minimizing the trace of P subject to the LMI
condition (7).

3. PROBLEM SETUP

Consider a nonlinear discrete-time dynamic sys-
tem described by the recursive state equations

x(k + 1) = f(x(k), u(k))

where x(k) ∈ Rnx denotes the system state at
time k, u(k) ∈ Rnu is the input vector at time k,
and f is twice differentiable.

We assume that at time k it is known that the
state x(k) belongs to a given ellipsoid Ex(k) of
center x̄(k) and shape matrix E(k), i.e.

x(k) = x̄(k) + Ex(k)δx(k),

for some vector δx(k) such that ‖δx(k)‖ ≤ 1.
Analogously, we assume that the possible inputs
at time k lie in an ellipsoid Eu(k)

u(k) = ū(k) + Eu(k)δu(k),

for some vector δu(k) such that ‖δu(k)‖ ≤ 1.
Next, we expand function f in series around the
nominal pair ū(k), x̄(k). The series expansion is
computed up to the second order terms, while
higher order contributions and process noise are
taken into account via an additional disturbance
term:

x(k + 1) = x̄(k + 1) + A(k)δx(k) + Bu(k)δu(k)

+h(δx(k), δu(k)) + Bνν(k)

where ν(k) ∈ Rnν is the additional process dis-
turbance term, which is also assumed to be un-
known but bounded as ‖ν(k)‖ ≤ 1, x̄(k + 1) .=
f(x̄(k), ū(k)), and A(k), Bu(k) are related to the
Jacobians of f A(k) .= Jx(k)Ex(k), Bu(k) .=
Ju(k)Eu(k), being

[Jx(k)]i,j
.
=

∂fi

∂xj

∣∣∣∣
x=x̄(k),u=ū(k)

, i, j = 1, . . . , nx

[Ju(k)]i,j
.
=

∂fi

∂uj

∣∣∣∣
x=x̄(k),u=ū(k)

,
i = 1, . . . , nx;
j = 1, . . . , nu.

The second order terms are collected in vector
h(δx(k), δu(k)), whose i-th component is

hi(δx(k), δu(k)) =
[

δx(k)
δu(k)

]T
[

H
(i)
xx (k) H

(i)
xu(k)

H
(i)T
xu (k) H

(i)
uu(k)

][
δx(k)
δu(k)

]

where the inner matrix above is related to the
Hessians of f

[
H

(i)
xx (k) H

(i)
xu(k)

H
(i)T
xu (k) H

(i)
uu(k)

]
=

1

2

[
ET

x (k) 0

0 ET
u (k)

][
H(i)

xx(k) H(i)
xu(k)

H(i)T
xu (k) H(i)

uu(k)

]
]



being

[
H(i)

xx(k)

]
`,j

=
∂2fi

∂x`∂xj

∣∣∣∣
x=x̄(k),u=ū(k)

, `, j = 1, . . . , nx

[
H(i)

xu(k)

]
`,j

=
∂2fi

∂x`∂uj

∣∣∣∣
x=x̄(k),u=ū(k)

,
` = 1, . . . , nx;
j = 1, . . . , nu

[
H(i)

uu(k)

]
`,j

=
∂2fi

∂u`∂uj

∣∣∣∣
x=x̄(k),u=ū(k)

, `, j = 1, . . . , nu.

Since we shall be concerned with one-step-ahead
prediction and filtering, in the sequel we drop the
explicit dependence on k, and denote x(k) with x,
x(k+1) with x+, etc. The state recursion is hence
described compactly as

x+ = x̄+ + Aδx + Buδu + h(δx, δu) + Bνν (8)

where ‖δx‖ ≤ 1, ‖δu‖ ≤ 1, ‖ν‖ ≤ 1.

4. PREDICTION STEP

The prediction step consists in determining a
“predicted” ellipsoid E+ of center x̂+ and shape
matrix E+ (or squared shape matrix P+ =
E+ET

+) that contains all the possible states x+

consistent with (8).

To this end, we proceed in two steps. First, we
express (8) in LFT form, using Lemma 1

x+ = x̄+ + L∆(I −H∆)−1R

where ∆ ∈ ∆1, being ∆1
.= {∆ ∈ ∆ : ‖∆‖ ≤ 1},

and ∆ the structure subspace

∆ = {∆ : ∆ = diag (δx, δu,∆x,∆u, δν) ∈ Rnw,nz}

with ∆x = diag (δx
T , . . . , δx

T ) ∈ Rnx,n2
x , ∆u =

diag (δu
T , . . . , δu

T ) ∈ Rnx,nxnu , and nw
.= 3nx +

nu + nν , nz
.= 3 + n2

x + nxnu. The LFT data is

L =
[

A Bu Inx Inx Bν

]
∈ Rnx,nw

R =




1
1
0n2

x,1

0nxnu,1

1


 ∈ Rnz ,1

H =




01,nx 01,nu 01,nx 01,nx 01,nν

01,nx 01,nu 01,nx 01,nx 01,nν

Hxx Hxu 0n2
x,nx

0n2
x,nx

0n2
x,nν

Hux Huu 0nxnu,nx 0nxnu,nx 0nxnu,nν

01,nx 01,nu 01,nx 01,nx 01,nν




with H ∈ Rnz,nw . Then, we observe that the set
of possible one-step reachable states x+ coincides
with the set of solutions of the uncertain linear
equations (in the variable x+)

Inxx+ = x̄+ + L∆(I −H∆)−1R.

The next lemma provides our key result for com-
puting a minimal ellipsoid containing the set of
one-step reachable states x+.

Lemma 2. (Prediction step). If there exist (S, T ) ∈
S(∆), S º 0, and P+ = PT

+ , x̂+ such that the LMI



P+ −L x̄+ − x̂+

∗ S −HT TH HT TR
∗ ∗ RT TR− 1


 º 0.

is feasible, then the ellipsoid E+(P+, x̂+) contains
all the possible states x+.

A minimal size ellipsoid can hence be determined
by minimizing the trace of P+ subject to the above
LMI condition.

Proof. The set of reachable states coincides with
the solution set of the ULEA(∆)x+ = Y(∆), with

[A(∆) Y(∆)] = [Inx x̄+] + L∆(I −H∆)−1[0nz,nx R].

A bounding ellipsoid for the ULE solution set is
obtained by applying Theorem 1 to this ULE. In
particular, in the situation at hand we have

Ψ = [Inx L x̄+], Υ =
[

0 H R
0 I 0

]
.

Hence, Ψ is full-rank and an orthogonal comple-
ment is explicitly given by

Ψ⊥ =



−L x̄+

I 0
0 −1


 .

Furthermore, Ω(S, T ) results to be

Ω(S, T ) =




0 0 0
0 HT TH − S HT TR
0 RT TH RT TR




and we have

ΨT
⊥ (diag (0, 0, 1)− Ω(S, T ))Ψ⊥

=
[

S −HT TH HT TR
RT TH RT TR− 1

]

from which the statement follows. 2

5. MEASUREMENT UPDATE STEP

At time k, our forecast about the system state at
k + 1 is summarized by the ‘predicted’ ellipsoid
E+ of center x̂+ and shape matrix E+, which may
be efficiently computed by means of Lemma 2.
Then, at time instant k + 1, a measurement y+

related to x+ becomes available. The purpose of
the update step of the filter is to integrate the
predicted knowledge about the state with the
new information coming from the measurement
equation.

Consider a non-linear measurement equation

y+ = g(x+, ξ+)



where x+ ∈ Rnx denotes the true (and unknown)
system state at time k + 1, ξ+ ∈ Rnξ is an
input parameter at time k + 1, y+ ∈ Rny is the
measurement, and g is twice differentiable.

At time k+1 it is known that the state x+ belongs
to the predicted ellipsoid E+, i.e.

x+ = x̂+ + E+δx, (9)

for some vector δx such that ‖δx‖ ≤ 1. Analo-
gously, we assume that the input parameter ξ+

lies in an ellipsoid Eξ

ξ+ = ξ̄ + Eξδξ,

for some vector δξ such that ‖δξ‖ ≤ 1. Now, we
expand function g in series around the nominal
pair ξ̄, x̂+. The series expansion is computed up
to the second order terms, while higher order
contributions and measurement noise are taken
into account via an additional disturbance term:

y+ = ȳ+ + C(x+ − x̂+) + Dξδξ + h(δx, δξ) + Dvv (10)

where v ∈ Rnv is the additional measurement
error term, which is also assumed to be unknown
but bounded as ‖v‖ ≤ 1, ȳ+

.= g(x̂+, ξ̄), and
C, Dξ are related to the Jacobians of g C

.= Jx,
Dξ

.= JξEξ, being

[Jx]i,j
.=

∂gi

∂xj

∣∣∣∣
x=x̂+,ξ=ξ̄

,
i = 1, . . . , ny;
j = 1, . . . , nx

[Jξ]i,j
.=

∂gi

∂ξj

∣∣∣∣
x=x̂+,ξ=ξ̄

,
i = 1, . . . , ny;
j = 1, . . . , nξ.

The second order terms are collected in vector
h(δx, δξ), whose i-th component is

hi(δx, δξ) =
[

δx

δξ

]T
[

H(i)
xx H

(i)
xξ

H
(i)T
xξ H

(i)
ξξ

] [
δx

δξ

]

where the inner matrix above is related to the
Hessians of g

[
H

(i)
xx H

(i)
xξ

H
(i)T
xξ

H
(i)
ξξ

]
=

1

2

[
ET

+ 0

0 ET
ξ

][
H(i)

xx H(i)
xξ

H(i)T
xξ

H(i)
ξξ

][
E+ 0
0 Eξ

]

being

[
H(i)

xx

]
`,j

=
∂2gi

∂x`∂xj

∣∣∣∣
x=x̂+,ξ=ξ̄

, `, j = 1, . . . , nx

[
H(i)

xξ

]
`,j

=
∂2gi

∂x`∂ξj

∣∣∣∣
x=x̂+,ξ=ξ̄

,
` = 1, . . . , nx;
j = 1, . . . , nξ

[
H(i)

ξξ

]
`,j

=
∂2gi

∂ξ`∂ξj

∣∣∣∣
x=x̂+,ξ=ξ̄

, `, j = 1, . . . , nξ.

The measurement equation (10) can now be ex-
pressed as an uncertain linear equation in the
variable x+:

Cx+ = (y+ − ȳ+ + Cx̂+)−Dξδξ − h(δx, δξ)−Dvv. (11)

Applying Lemma 1 to the right-hand-side of (11),
we have that

Cx+ = η̄+ + Ly∆(I −H∆)−1R (12)

where

∆ = diag (δx, δξ, ∆x,∆ξ, δv) ∈ Rnw,nz

with ∆x = diag (δx
T , . . . , δx

T ) ∈ Rny,nynx , ∆ξ =
diag (δξ

T , . . . , δξ
T ) ∈ Rny,nynξ , nw

.= nx + nξ +
2ny + nv, nz

.= 3 + nynx + nynξ, and

η̄+ = y+ − ȳ+ + Cx̂+

Ly =
[
0ny,nx

−Dξ Iny
Iny

−Dv

] ∈ Rny,nw

R =




1
1
0n2

x,1

0nxnξ,1

1


 ∈ R

nz,1

H =




01,nx 01,nξ
01,nx 01,nx 01,nv

01,nx
01,nξ

01,nx
01,nx

01,nv

Hxx Hxξ 0n2
x,nx

0n2
x,nx

0n2
x,nv

Hξx Hξξ 0nxnξ,nx 0nxnξ,nx 0nxnξ,nv

01,nx 01,nξ
01,nx 01,nx 01,nv




with H ∈ Rnz,nw . The set of states x+ which are
simultaneously consistent with the measurement
equation (12) and the a-priori information (9)
hence coincides with the set of solutions of the
joint ULEs

Cx+ = η̄+ + Ly∆(I −H∆)−1R

Inxx+ = x̂+ + E+δx.

Notice further that, due to the particular struc-
ture of the problem at hand (e.g. (I − H∆) is
block lower-triangular, with identity blocks on the
diagonal), we may write

E+δx = Lx∆(I −H∆)−1R

with Lx
.= [Ex 0nx,nξ

0nx,ny 0nx,ny 0nx,nv ], and
therefore the data of the joint ULEs A(∆)x+ =
Y(∆) may be written in LFT format as

[A(∆) Y(∆)] (13)

=
[

C η̄+

Inx x̂+

]
+

[
Ly

Lx

]
∆(I −H∆)−1[0nz,nx R].

Based on this representation, the next lemma pro-
vides a computationally efficient way of determin-
ing the ‘filtered’ ellipsoid that contains the states
x+ which are simultaneously consistent with the
prediction and the measurement.

Lemma 3. (Measurement update). Given the pre-
dicted ellipsoid E+(x̂+, E+), the measurement
data in the form (13), and assuming C is full-
rank, a minimal size filtered ellipsoid E+|+ of
center x̂+|+ and squared shape matrix P+|+ is



computed by solving the following SDP in the
variables x̂+|+, P+|+, (S, T ) ∈ S(∆)

min TrP+|+ subject to: S º 0


P+|+ Ψ⊥11 x̂+ − x̂+|+
∗ Q11(S, T ) Q12(S, T )
∗ Q21(S, T ) Q22(S, T )


 º 0

where

[
Q11(S, T ) Q12(S, T )
Q21(S, T ) Q22(S, T )

]
.
=

[
Ψ⊥12 ψ⊥22

0 −1

]T
[

S −HT TH −HT TR

−RT TH 1−RT TR

]
]

and Ψ⊥11 =
[
Inx 0nx,ny 0nx,nξ

0nx,nv

]
,

Ψ⊥12 =




E−1
x 0nx,ny

0nx,nξ
0nx,nv

0nξ,nx
0nξ,ny

Inξ
0nξ,nv

−C Iny
Dξ Dv

0ny,nx
−Iny

0ny,nξ
0ny,nv

0nv,nx
0nv,ny

0nv,nξ
Inv


 ,

ψT
⊥22 =

[
0T

nx
0T

nξ
(y+ − ȳ+)T 0T

ny
0T

nv

]
.

Proof. The result is again obtained by applying
Theorem 1 to the ULE (13). In this specific case,
we need to determine the orthogonal complement

Ψ⊥1 of
[

C Ly

Inx Lx

]
and vector ψ⊥2 such that

[
C Ly

Inx Lx

]
ψ⊥2 =

[
η̄+

x̂+

]
.

If C is full rank (i.e. rank C = ny), then it can be

verified by direct inspection that Ψ⊥1
.=

[
Ψ⊥11

Ψ⊥12

]

and ψ⊥2
.=

[
x̂+

ψ⊥22

]
, with Ψ⊥11, Ψ⊥12, ψ⊥22 given

in the statement of the lemma, indeed satisfy the
two relations above. We also have

Υ =
[

0nz,nx H R
0nw,nx Inw 0nw,1

]

and therefore

diag (0, 0, 1)− Ω(S, T ) =

[
S −HT TH −HT TR

−RT TH 1−RT TR

]
,

ΨT
⊥(diag (0, 0, 1)− Ω(S, T ))Ψ⊥ =[

Ψ⊥12 ψ⊥22

0 −1

]T
[

S −HT TH −HT TR

−RT TH 1−RT TR

]
],

[
I 0 | x̂+|+

]
Ψ⊥ = [Ψ⊥11 | x̂+ − x̂+|+] =[
Inx 0nx,ny 0nx,nξ 0nx,nv x̂+ − x̂+|+

]
.

The statement of the lemma follows immediately
from the above derivations. 2

6. CONCLUSIONS

In this paper we presented the basic structure of a
recursive algorithm that determines at each step

an ellipsoidal membership set for the state of a
nonlinear system, based on model predictions and
measurement maps that are locally approximated
up to the second order terms. At each step, the
method requires solving two convex semidefinite
programs whose numerical complexity essentially
grows as n3.5

x , according to the complexity analysis
in (Calafiore and El Ghaoui, 2004).

Ongoing work is dedicated to the software im-
plementation of the described algorithm and to
the comparative analysis of its performance via
numerical simulations and experiments.
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