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1. INTRODUCTION

The nonlinear system consisting of the combi-
nation of a nonlinear static block and a linear
subsystem is an important model in engineering,
biology, communication and in other fields (see,
for example, (Celka et al, 2001; Greblicki, 1997;
Westwick and Kearney, 1992), among others). The
system is called the Hammerstein or Wiener sys-
tem in accordance with the order of the subsys-
tems: it is called Hammerstein if the nonlinearity
is followed by the linear subsystem, and Wiener if
the nonlinearity is after the linear subsystem.

For recent years a great research attention has
been paid to the identification issue of Wiener
and Hammerstein systems. For describing the
nonlinearity there are parametric (Al-Duwaish
and Krim, 1997; Bei, 2003; Celka et al, 2001;
Chen, 2004b; Emerson et al, 1992; Stoica and
Söderström, 1982; Vörös (2001, 2003); Wigren,
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1994) and nonparametric (Bai, 2002; Chen, 2004a;
Greblicki, 2002; Greblicki and Pawlak, 1989;
Kalafatis et al, 1989; Lang, 1997; Ljung, 1987;
Pawlak, 1991) approaches. In the nonparametric
approach, the unknown nonlinear function may
be identified with the help of approximation by
smooth functions, for example, the nonlinear func-
tion is expanded to a series of orthogonal functions
in (Bai, 2002; Pawlak, 1991). But values of the
nonlinear function may also be directly estimated
by using kernel functions (Chen, 2004a; Greblicki,
2002; Greblicki and Pawlak, 1989; Kalafatis et al,
1997). In the parametric approach the nonlinear
function is often expressed as a linear combination
of known smooth functions, and the identification
problem is reduced to estimating coefficients of
the linear combination. However, practical non-
linearities may not be smooth, for example, the
piece-wise linear functions with preloads and dead
zones (Al-Duwaish and Karim, 1997; Chen, 2004b;
Vörös (2001, 2003)) are common in engineering
and biology.



There are various methods and algorithms de-
veloped for identifying Wiener and Hammerstein
systems, but most of them are nonrecursive, and
only a few of them are proved to be strongly
consistent (Chen (2004a,b)). There are even not
too many papers (Bai, 2002; Greblicki, 2002; Gre-
blicki and Pawlak, 1989; Kalafatis et al, 1997)
concerned with convergence in probability. Here
we are interested in recursive estimation and in
convergence of estimates with probability one.

To be precise, we consider the one-dimensional
noise-free Wiener and Hammerstein systems as
shown in Figures 1 and 2:

Fig. 1 Hammerstein System

Fig. 2 Wiener System

The nonlinarity of the system is characterized by
a static piece-wise linear function

f(v)

=





c+(v − d+) + b+, v > d+

0, −d− ≤ v ≤ d+

c−(v + d−)− b−, v < −d−, c+ ≥ 0, c− ≥ 0.

(1)

As concerns the linear subsystem, the ARMA
model

A(z)yk = B(z)vk−1 (2)

with

A(z) = 1 + a1z + · · ·+ apz
p, (3)

B(z) = 1 + b1z + · · ·+ bqz
q, zyk = yk−1 (4)

is considered for Hammerstein systems, and the
MA model

vk = C(z)uk, (5)

with

C(z) = 1 + c1z + · · ·+ crz
r (6)

is considered for Wiener systems.

The problem is to recursively estimate six param-
eters c+, d+, b+, c−, d−, b− (h+ = c+d+ − b+,
and h− = c−d− − b−) contained in f(·) and all
coefficients of the linear subsystems, i.e.,

θT ∆= [−a1, . . . ,−ap, b1, . . . , bq] (7)

for the Hammerstein system, and

ϑT ∆= [c1, . . . , cr] (8)

for the Wiener system.

The identification algorithms for Hammerstein
and Wiener systems are given in Sections 2 and 3,
respectively. Two numerical examples are demon-
strated in Section 4, and a few concluding remarks
are given in the last section.

2. IDENTIFICATION OF HAMMERSTEIN
SYSTEMS

For identifying the system we need the following
conditions H1-H4.

H1. A(z) is stable, i.e., all roots of A(z) are outside
the closed unit disk.

H2. A(z) and B(z) are coprime, |ap| + |bq| 6= 0,
and q > p.

H3. B−1(z)− 1
2 is SPR, i.e., B−1(eiλ)+B−1(e−iλ) >

1, ∀λ ∈ [0, 2π].

H4. The upper bound D for d+ and d− is available:

0 ≤ d+ < D, and 0 ≤ d− < D.

As the system input we take {uk} to be a se-
quence of mutually independent and identically
distributed (iid) random variables with uniform
distribution over [−2D, 2D].

Estimation algorithm for θ

Let y0
k be the empirically centralized system out-

put:

y0
k

∆= yk − yk, (9)

where yk is the sample average recursively calcu-
lated according to

yk =
(
1− 1

k

)
yk−1 +

1
k

yk. (10)

Let

φT
k = [y0

k, . . . , y0
k−p+1, v̂

0
k−1, . . . , v̂

0
k−q],

v̂0
k−1 = y0

k − θT
k φk−1,

(11)

and the estimate θk for θ be recursively computed
according to the ELS algorithm (Chen and Guo,
1991; Ljung, 1987)

θk+1 = θk + akPkφk(y0
k+1 − φT

k θk), (12)

Pk+1 = Pk − akPkφkφT
k Pk, ak = (1 + φT

k Pkφk)−1

(13)

with arbitrary θ0 and P0 > 0.

Remark 1. If Evk = 0, for example, d+ = d−,
c+ = c−, b+ = b−, then Eyk = 0 ∀k ≥ 1. In this
case (9) and (10) are not needed and yk can be
directly used in (11), (12) replacing y0

k

Estimation Algorithms for c+, h+, c− and
h−



Let us write θk given by (12) in the component
form:

θT
k = [−a1k, . . . ,−apk, b1k, . . . , bqk].

Define

Bk
∆=




−b1k 1 · · · 0
...

...
...
... 1

−bqk 0 0




, Ak
∆=




1
a1k,

...
aqk


 ,

(14)

where aik = 0 for i > p (by A2, q > p).

Recursively define x̂k with an arbitrary initial x̂0:

x̂k+1 = Bk+1x̂k + Ak+1yk+1. (15)

Set

v̂k−1
∆= [1, 0, . . . , 0]x̂k, (16)

which will serve as the estimate for vk−1, the
output of the nonlinear block.

Denote

z+
k+1

∆= v̂kI[uk≥D]. (17)

Let

µ+ ∆= [c+, h+]T , φ+
k

∆= [uk,−1]T I[uk≥D]. (18)

By notice of that f(u) = c+u − h+ for u ≥ D or
vk = µ+T φ+

k for uk ≥ D, it is natural to estimate
µ+ by the least squares (LS) algorithm:

µ+
k = µ+

k−1 + a+
k P+

k φ+
k (z+

k+1 − φ+T
k µ+

k−1) (19)

P+
k+1 = P+

k − a+
k P+

k φ+
k φ+T

k P+
k , (20)

a+
k = (1 + φ+T

k P+
k φ+

k )−1.

The estimation for µ− ∆= [c−, h−]T is carried out
in a similar way. Defining

z−k+1
∆= v̂kI[uk≤−D], φ−k

∆= [uk 1]T I[uk≤−D],

(21)

we estimate µ− by the recursive LS algorithm:

µ−k = µ−k−1 + a−k P−k φ−k (z−k+1 − φ−T
k µ−k−1), (22)

P−k+1 = P−k − a−k P−k φ−k φ−T
k P−k , (23)

a−k = (1 + φ−T
k P−k φ−k )−1.

Estimates for d+, b+, d−, and b−

Set

ξ+
0 = 0, (24)

and recursively define

ξ+
k =

k − 1
k

ξ+
k−1 +

v̂k

k
I[uk≥0], (25)

where v̂k is given by (16). In order to avoid the
possible division by zero we modify c+

k as follows:

c+
k

∆=





c+
k , if |c+

k | ≥
1
k

sign(c+
k )

1
k

, if |c+
k | <

1
k

.
(26)

Then d+ and b+ are estimated by d+
k and b+

k ,
respectively, where

d+
k =

1
c+
k

[h+
k − sign(h+

k )

· (h+2
k + 4c+

k D(c+
k D − h+

k − 2ξ+
k )

) 1
2 ], (27)

and

b+
k

∆= c+
k d+

k − h+
k . (28)

Similarly, set

ξ−0 = 0, (29)

and define

ξ−k =
k − 1

k
ξ−k−1 +

v̂k

k
I[uk≤0]. (30)

After modifying c−k to c−k :

c−k
∆=





c−k , if |c−k | ≥
1
k

(signc−k )
1
k

, if |c−k | <
1
k

,
(31)

d− and b− are respectively estimated by

d−k =
1
c−k

[
h−k − sign(h−k )

·
(
(h−k )2 + 4c−k D(c−k D − h−k + 2ξ−k )

) 1
2
]
,

(32)

and

b−k
∆= c−k d−k − h−k . (33)

Theorem 1. Assume conditions H1–H4 hold.
Then i) θk given by (9)–(13) is strongly consistent:

θk −−−−→
k→∞

θ a.s.,

ii) µ+
k and µ−k respectively given by (19), (20) and

(22), (23) incorporating with (14)–(17) and (21)
are strongly consistent:

µ+
k −−−−→

k→∞
[c+, h+]T a.s., µ−k −−−−→

k→∞
[c−, h−]T a.s. ,

iii) d+
k , b+

k , d−k , and b−k are also strongly consistent:

d+
k −−−−→

k→∞
d+ a.s., b+

k −−−−→
k→∞

b+ a.s.,

d−k −−−−→
k→∞

d− a.s., and b−k −−−−→
k→∞

b− a.s.

Instead of detailed proof we just point out that
Evk may not be zero mean, and when estimating
θ we should consider

A(z)(yk − Eyk) = B(z)w0
k

with w0
k

∆= vk−1 −Evk−1 to replace (2). However,
Eyk is unknown, and we have to approximate



yk − Eyk by y0
k, for which the following model

takes place:

A(z)y0
k = B(z)w0

k + εk, (34)

where

εk
∆= −A(z)(yk − Eyk). (35)

The main effort of the proof is devoted to proving
strong consistency of the ELS for (34), an ARMA
model with errors.

3. IDENTIFICATION OF WIENER SYSTEMS

We now consider the Wiener system defined by
(1),(5), and (6). Denoting by

ϕT
k−1 = [uk−1, . . . , uk−r], (36)

we rewrite (5) as

vk = uk + ϑT ϕk−1, (37)

where ϑ is given by (8).

The coefficients to be estimated are c+, d+, b+,
c−, d−, b− for the nonlinear block, and ϑ for the
linear subsystem.

Let us take a sequence of iid Gaussian random
variables uk ∈ N (0, 1) to serve as the system
input. Then the output of the linear subsystem
vk = uk + ϑT ϕk−1 is Gaussian stationary and
ergodic (Loève, 1977-1978), vk ∈ N (0, σ2

v). It is
clear that

σ2
v = 1 + ‖ϑ‖2. (38)

For convenience of writing let us denote

α+ =
d+

σv
, α− =

d−

σv
, β+ = c+σv, β− = c−σv.

(39)

Estimates for α+, β+, h+, b+ and α−, β−, h−, b−

Recursively define

p+
k = (1− 1

k
)p+

k−1 +
1
k

I[yk>0], (40)

p−k = (1− 1
k

)p−k−1 +
1
k

I[yk<0], (41)

with arbitrary initial values p+
0 , p−0 , and then

derive α+
k and α−k , the estimates for α+ and α−,

according to the table of Φ(x) ∆= 1√
2π

∫ x

−∞ e−
t2
2 dt:

p+
k = 1− Φ(α+

k ), p−k = Φ(−α−k ). (42)

For estimating β+, h+, β− and h− we recursively
calculate

ȳ+
k = (1− 1

k
)ȳ+

k−1 +
1
k

ykI[yk>0] (43)

ȳ2+
k = (1− 1

k
)ȳ2+

k−1 +
1
k

y2
kI[yk>0] (44)

ȳ−k = (1− 1
k

)ȳ−k−1 +
1
k

ykI[yk<0] (45)

ȳ2−
k = (1− 1

k
)ȳ2−

k−1 +
1
k

y2
kI[yk<0] (46)

with arbitrary initial values, and obtain estimates
β+

k and h+
k , by solving the following second order

algebraic equations

ȳ+
k =

β+
k√
2π

e−
(α

+
k

)2

2 − h+
k p+

k (47)

ȳ2+
k =(β+

k )2
(α+

k e−
(α

+
k

)2

2√
2π

+ p+
k

)

− 2√
2π

β+
k h+

k e−
(α

+
k

)2

2 + (h+
k )2p+

k , (48)

where α+
k , and p+

k are given by (40) and (42).

Similarly, β−k and h−k are derived from the follow-
ing algebraic equations:

ȳ−k = − β−k√
2π

e−
(α
−
k

)2

2 + h−k p−k (49)

ȳ2−
k = (β−k )2

(α−k e−
(α
−
k

)2

2√
2π

+ p−k
)

− 2√
2π

β−k h−k e−
(α
−
k

)2

2 + (h−k )2p−k . (50)

It is worth noting that (47), (48)( or (49), (50))
can easily be solved with respect to β+

k and h+
k

(or β−k and h−k ). For this it suffices to replace h+
k

in (48) with

h+
k =

1
p+

k

( β+
k√
2π

e−
(α

+
k

)2

2 − ȳ+
k

)
(51)

derived from (47). As a result, (48) becomes a
second order algebraic equation with unknown β+

k

and its solution is

β+
k =

(
ȳ2+

k − (ȳ+
k )2 1

p+
k

α+
k γ+

k + p+
k −

(γ+
k

)2

p+
k

)1/2

, (52)

where γ+
k

∆= 1√
2π

e−
(α

+
k

)2

2 .

Similarly, we have

h−k =
1

p−k
(β−k γ−k + ȳ−k ) (53)

and

β−k =
( ȳ2−

k − 1
p−

k

(ȳ−k )2

−α−k γ−k + p−k −
(γ−

k
)2

p−
k

)1/2

, (54)

where γ−k
∆= 1√

2π
e−

(α
−
k

)2

2 .

Set

b+
k

∆= α+
k β+

k − h+
k , b−k = α−k β−k − h−k . (55)

Estimates for ‖ϑ‖, c+, d+ and c−, d−

We apply the kernel function approach used in
(Greblicki and Pawlak, 1989; Greblicki, 2002) and
also in (Chen, 2004b).



Define the kernel function

wk
∆= k−2εe−k4εu2

k , ε ∈ (0,
1
4
) (56)

where uk ∈ N (0, 1) is the system input.

Let us recursively compute

µk = (1− 1
k

)µk−1 +
1
k

wkykI[yk>0], (57)

where wk is given by (56) and yk is the system
output, and find the root of the following algebraic
equations with respect to x:

µk +
h+

k√
2
(1− Φ(α+

k x))− β+
k

2
√

πx
e−

(α
+
k

)2x2

2 = 0.

(58)

It can be shown that the solution to (58) uniquely
exists for all sufficiently large k. Denote by xk the
solution of (58), and the estimate ‖ϑ‖k for ‖ϑ‖ is
defined by

‖ϑ‖k =
1√

x2
k − 1

. (59)

Define

c+
k

∆=
β+

k

(1 + ‖ϑ‖2k)1/2
, c−k

∆=
β−k

(1 + ‖ϑ‖2k)1/2
(60)

d+
k

∆= α+
k (1 + ‖ϑ‖2k)1/2, d−k

∆= α−k (1 + ‖ϑ‖2k)1/2.
(61)

Estimate for ϑ

The nonlinearity f(·) has been estimated, it re-
mains to estimate C(z) in the linear subsystem.

Define

v̂k
∆=





1
c+
k

(h+
k + yk), if yk > 0

0, if yk = 0
1
c−k

(yk − h−k ), if yk < 0

(62)

where

c+
k = c+

k ∨
1
k

, c−k = c−k ∨
1
k

.

Further, define

ϕ̄k−1
∆= ϕk−1I[yk 6=0], (63)

zk
∆= (v̂k − uk)I[yk 6=0] = (ϑT ϕk−1 + εk)I[yk 6=0].

(64)

The unknown ϑ is estimated by the least squares
algorithm:

ϑk+1 =ϑk + akPkϕ̄k(zk+1 − ϑT
k ϕ̄k) (65)

Pk+1 =Pk − akPkϕ̄kϕ̄T
k Pk, (66)

ak =(1 + ϕ̄T
k Pkϕ̄k)−1

with arbitrary ϑ0 and P0 > 0.

Theorem 2. For the Wiener system described by
Figure 2 with nonlinearity and linear system given
by (1), and (5) and (6), respectively, if the system

input {uk} is iid and uk ∈ N (0, 1), then α+
k , α−k

given by (40)-(42), h+
k , h−k , β+

k , β−k given by (43)-
(54), c+

k , c−k , d+
k , d−k given by (60)-(61), and ϑk

defined by (62)-(66) are strongly consistent.

The central part of the proof is to show

lim
n→∞

1
n

n∑

k=1

wkykI[yk>0]

=
−h+

√
2

(
1− Φ

( d+

‖ϑ‖
))

+
c+‖ϑ‖
2
√

π
e−

1
2 ( d+
‖ϑ‖ )2 a.s.

(67)

4. NUMERICAL EXAMPLES

We now give numerical examples to demonstrate
the strong consistency of the algorithms proposed
in Section 3.

Matlab is used to generate the iid sequences {uk}
for both Hammerstein and Wiener systems, and to
carry out all computation. In all figures the solid
lines represent the true values and the dotted lines
are their estimates.

For the Hammerstein system let the parameters of
f(·) and the ARMA subsystem take the following
values:

a1 = 1.5, a2 = 0.6, b1 = 0.15, b2 = −0.3, b3 = 0.45
d+ = 1, c+ = 0.7, b+ = 1.6
d− = 1.2, c− = 0.6, b− = 1.7, and D = 1.5.

It is clear that the polynomials

A(z) = 1 + 1.5z + 0.6z2

B(z) = 1 + 0.15z − 0.3z2 + 0.45z3

meet all requirements listed in A1-A3.

Fig. 3 demonstrates the estimates for a1 and a2,
while Fig. 4 for b1, b2, and b3. Fig. 5 and Fig
6 give estimates for c+, b+, d+ and c−, b−, d−,
respectively. It is seen that all estimates converge
to their true values.
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Fig. 3. Fig. 4.
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For the Wiener system let the parameters of f(v)
and the coefficients in (6) be as follows

d+ = 0.65, d− = 0.86, c+ = 0.8,

c− = 0.6, b+ = 1.15, b− = 1.36
r = 2, c1 = 1.2, and c2 = 0.9.

The parameter ε in the kernel function (56)
should be small, because otherwise wk would
tend to zero too fast so that the new data would
be negligible. Here we take ε = 1

11000 .

The simulation results are shown in Figs 7, 8, 9,
and 10, from which we see that all estimates
asymptotically converge to the the true values,
fluctuating at beginning .
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