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Abstract: This paper derives performance limitations associated with sensor delays in
single-input single-output discrete-time feedback loops. Aspects of performance consid-
ered are tracking and sensitivity to plant uncertainty. It is shown that, in both one degree-
of-freedom and two degree-of-freedom control configurations, closed-loop sensitivity
with respect to plant model uncertainty is fundamentally limited by the presense of
the sensor delay. The sensitivity bound provided in this paper can be used to quantify
how sensitivity necessarily worsens as the sensor delay increases and as the closed-loop
bandwidth increases. Copyright c©2005 IFAC
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1. INTRODUCTION

Recently there has been an initiative to incorporate
feedback control into radiotherapy, i.e., the treatment
of cancer by external ionizing radiation (Davison and
Hwang, 2003). The radiotherapy research project has
motivated several theoretical control problems, in-
cluding the question of how to accommodate time
delays in feedback sensors. In the case of the radio-
therapy work, sensor delays arise because of image
processing and calculations required to determine tu-
mor position and radiation dose distribution informa-
tion; sensor delays arise naturally in other applications
where, for example, data must be transmitted over
huge distances.

To explain the sensor delay compensation problem
addressed in this paper, consider the three block di-
agrams in Figure 1. Figure 1(a) shows the classical
one-degree-of-freedom (1-DOF) single-input single-
output (SISO) unity-feedback control topology. The
plant and controller are linear time-invariant (LTI)
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with discrete-time transfer functions P[z] and Ca[z],
respectively, where the superscript a is used to connect
the controller with the block diagram in Figure 1(a).
Partly for simplicity and partly because of technical
hurdles, it will be assumed throughout that the plant,
P[z], is stable; this is consistent with the motivating
radiotherapy example. It is also assumed that the plant
P[z] is not identically zero, which is a trivial and un-
interesting case. Using standard notation, r[k] denotes
the reference signal, y[k] denotes the plant output, and
e[k] := r[k]− y[k] denotes the tracking error. In Fig-
ure 1(a) it is assumed that the sensor is perfect, i.e., it
has no delay. It is also assumed that Ca[z] has been
designed to achieve desired closed-loop properties.
In addition to stability, the closed-loop properties in
question are as follows, where T a

αβ denotes the transfer
function from signal α to signal β (with the superscript
a again used to connect the transfer functions with
Figure 1(a)), and where the discrete-time frequency is
denoted Ω:

• Good tracking, as measured by the magnitude of
T a

re[e
jΩ] = 1/(1+P[e jΩ]Ca[e jΩ]).



• Good sensitivity of T a
ry with respect to pertur-

bations in the plant, P[z], as measured by the
magnitude of

Sa[e jΩ] :=
∂T a

ry[e
jΩ]

∂P[e jΩ]

P[e jΩ]

T a
ry[e jΩ]

=
1

1+P[e jΩ]Ca[e jΩ]
.

Typically, it is desired to achieve “good” tracking and
“good” sensitivity at low frequencies; at high frequen-
cies, the loop gain must be rolled off due to other con-
cerns, e.g., sensor noise and plant model uncertainty.
It is popular to express this type of requirement using
weighting functions and ∞-norms. For the purposes of
this paper, assume there exist stable, biproper (i.e., rel-
ative degree zero), low-pass weights W1[z], W2[z] and
positive constants ε1, ε2 such that “good” performance
is equivalent to closed-loop stability and

‖W1T a
re‖∞ := max

0≤Ω<π
|W1[e

jΩ]T a
re[e

jΩ]| ≤ ε1, (1)

‖W2Sa‖∞ := max
0≤Ω<π

|W2[e
jΩ]Sa[e jΩ]| ≤ ε2. (2)

Evidently, these two criteria are similar since the
closed-loop transfer functions T a

re and Sa are equal.
Note, in particular, that boosting the controller gain at
a specific frequency simultaneously improves tracking
and sensitivity performance at that frequency.

Now consider Figure 1(b), where a sensor delay of N
(with N ≥ 1) samples,

F [z] =
1
zN ,

is introduced to the feedback loop. The delayed output
signal, denoted ym[k] (where the m subscript denotes
“measured”), is fed back to the controller. Obviously
the presence of the sensor delay will affect the closed-
loop performance, possibly causing the loss of “good”
performance. A key point is that the closed-loop prop-
erties are affected in different ways by the presence
of the sensor delay; in particular, the way in which
the sensor delay affects tracking is different from the
way in which it affects the closed-loop sensitivity.
Section 2 considers this issue in more detail, show-
ing that it is possible to design the controller Cb to
recover tracking performance attained in Figure 1(a),
but, because the sensor delay imposes performance
limitations, it may not be possible to recover “good”
sensitivity performance.

In the radiotherapy project, it was recognized at an
early stage that the sensor delay in Figure 1(b) can
greatly deteriorate closed-loop performance. The 2-
DOF control scheme shown in Figure 1(c) was there-
fore proposed in an attempt to recover the perfor-
mance of Figure 1(a) (Davison and Hwang, 2003).
This scheme, which is a special case of the general
observer-predictor controller characterization devel-
oped by Mirkin and Raskin (2003), uses an observer-
based estimator to estimate the plant output, essen-
tially “cancelling out” the sensor delay. Setting Cc[z] =
Ca[z] recovers the tracking performance from Fig-
ure 1(a). In the radiotherapy project, this approach
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Fig. 1. (a) Basic 1-DOF control loop with no sensor
delay; (b) inclusion of a sensor delay in the 1-
DOF control loop; (c) a 2-DOF control loop,
using an observer-based estimator to compensate
for the sensor delay.

was taken and used successfully on a prototype ex-
periment. However, little attention was paid to how
the estimator was designed since any unbiased stable
estimator will effectively “cancel” the sensor delay.
Later, an attempt to deal with plant model uncertainty
motivated the question that is addressed in Section 3:
is it possible to design the estimator to recover the
sensitivity properties of Figure 1(a)? Intuitively, some
aspect of closed-loop performance must be impaired
by the delay, and one would expect the degree of im-
pairment to increase as the length of the sensor delay
increases. The main contribution of Section 3 is to
show that this intuition is correct; specifically, the sen-
sitivity properties of the 2-DOF setup in Figure 1(c)
are examined, and limitations on the achievable sen-
sitivity are derived as a function of the length of the
sensor delay. Interestingly, the performance limitation
is very similar to that derived in the 1-DOF setup in
Figure 1(b).

The 2-DOF delay compensation approach in Fig-
ure 1(c) is reminiscent of the Smith predictor and
its modern descendents (e.g., see (Smith, 1957) and,
for a more complete and modern report, (Furukawa
and Shimenura, 1983)). The main difference between
the setup in this paper and the setup in the Smith
predictor literature is that the time delay appears in
the feedback loop in the former and in the feedfor-
ward path in the latter. Although outside the scope of
this paper, the methods used here can be applied to



derive similar performance limitations for the Smith
predictor framework. It should also be pointed out
that this work is connected with other research into
performance limitations where time delays, typically
in a continuous-time 1-DOF framework, are explicitly
dealt with (e.g., see (Looze and Freudenberg, 1991)
or (Middleton, 1991)). To the best of the authors’
knowledge, none of the existing performance limita-
tion results apply to the 2-DOF setup in Figure 1(c), so
the contributions of this paper are novel in that respect;
however, closely related work includes that of Chen et
al. (2000) and Toker et al. (2002).

2. ANALYSIS OF THE 1-DOF SETUP

Turn back to the 1-DOF feedback loop in Figure 1(b).
The closed-loop transfer functions reflecting the per-
formance criteria of interest are modified from those
related to Figure 1(a) as follows (where the superscript
b connects the transfer functions with Figure 1(b), and
where frequency arguments are omitted for clarity):

• Tracking performance is now measured by the
magnitude of

T b
re =

1
1+PCbF

+
PCb(F−1)

1+PCbF
, (3)

where e := r− y is no longer the output of the
first summer.

• The sensitivity of T b
ry with respect to perturba-

tions in the plant, P, is now measured by the
magnitude of

Sb :=
∂T b

ry

∂P
P

T b
ry

=
1

1+PCbF
. (4)

Note that T b
re differs from Sb.

The main objective of this section is to determine to
what degree it is possible, by designing controller Cb,
to recover the closed-loop performance obtained in
Figure 1(a). The following theorem establishes that
it is possible to design Cb to recover tracking perfor-
mance:

Theorem 1: The controller

Cb =
Ca

1+PCa(1−F)
(5)

stabilizes the closed-loop system in Figure 1(b) and
results in “good” tracking, i.e.,

‖W1T b
re‖∞ ≤ ε1. (6)

Proof: Since P[z] is stable, the set of all stabilizing
controllers is

{

Qb

1−PFQb : Qb is stable and proper

}

, (7)

where Qb is the so-called Youla parameter (Doyle et
al., 1992). The controller (5) is stabilizing if it equals

one of the controllers in (7). In fact, it is easy to show
that controller (5) corresponds to the Youla parameter

Qb =
Ca

1+PCa ,

which is stable and proper since Ca is assumed to be a
stabilizing controller for Figure 1(a). Therefore (5) is
stabilizing.

To show that “good” tracking is achieved, compute T b
re

in (3) for the controller (5):

T b
re =

1
1+PCbF

+
PCb(F−1)

1+PCbF
= · · ·=

1
1+PCa = T a

re.

In other words, the tracking performance of Fig-
ure 1(a) is recovered perfectly, and therefore (1) im-
plies that (6) is satisfied. 2

Although it is possible to recover tracking perfor-
mance, sensitivity with respect to plant model un-
certainty is fundamentally constrained by the sensor
delay, as the following theorem indicates:

Theorem 2: Let S denote the set of stable, proper
transfer functions. Define

γN := min
Q∈S

‖W2−FQ‖∞. (8)

Then γN is a monotonically increasing function of N.
Moreover, for any stabilizing controller in Figure 1(b),
sensitivity is limited by γN :

‖W2Sb‖∞ ≥ γN . (9)

Proof: Standard model-matching theory results will
be exploited. In particular, the fact that the solu-
tion to minQ∈S ‖T1 − T2Q‖∞ (for given T1,T2 ∈ S )
can be found by forming an equivalent interpolation
problem on Q (where the interpolation constraints
depends only on T2) is used. A good summary of
the continuous-time SISO model-matching problem
is provided in (Doyle et al., 1992); the discrete-time
problem can be converted to an equivalent continuous-
time problem using a bilinear transformation.

Start off by using (4) and (7) to determine that, for any
particular stabilizing controller Cb with Youla param-
eter Qb and closed-loop sensitivity Sb, the following
holds:

W2Sb = W2
1

1+PCbF
= W2−W2PFQb.

Hence,

‖W2Sb‖∞ ≥min
Q∈S

‖W2−W2PFQ‖∞ (10)

≥min
Q∈S

‖W2−FQ‖∞

= γN .

The second inequality above follows because the re-
moval of W2P from (10) reduces the number of in-
terpolation constraints on Q, thus decreasing the best
achievable minimum. To argue that γN is an increasing
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Fig. 2. Discrete-time sensitivity performance limita-
tion curves for weighting function (11).

function of N, again an appeal is made to model-
matching theory: since F [z] = 1/zN , the only effect
of increasing N to N + 1 is to include an extra pole at
z = 0, which results in an extra interpolation constraint
on Q[z], which, in turn, increases the best achievable
minimum. 2

Note that γN depends on the weighting function W2,
but not on the plant, P. For a specific choices of
weight, it is possible to numerically evaluate γN ,
thereby quantifying the sensitivity performance lim-
itation. For example, a useful choice of weighting
function is the first-order low-pass filter

W2[z] =
z tan(Ωb/2)+ tan(Ωb/2)

z(tan(Ωb/2)+1)+(tan(Ωb/2)−1)
, (11)

where Ωb (0 < Ωb < π) is the bandwidth, as measured
by the −3dB frequency. Using standard computa-
tional algorithms, the solution to the model-matching
problem (8) was computed for different values of N as
Ωb varies from 0 to π. Figure 2 shows the resulting
values of γN . The curves show explicitly that there
are bounds on the achievable sensitivity in the face
of sensor delay, and also that the bounds get progres-
sively worse as the system bandwidth, (Ωb) or the
sensor delay (N) increases. These curves can be used
quantitatively: for example, if N = 1 (i.e., a sensor
delay of one sample), and ε2 = 0.01 (i.e., sensitivity
must be no more than 1% at all frequencies within
the system bandwidth), then the (discrete-time) sys-
tem bandwidth must satisfy Ωb < 0.02; if N = 2, the
bandwidth bound worsens to Ωb < 0.009, etc.

In summary, although it is possible to recover tracking
performance in the presence of sensor delay, there is a
fundamental limitation on the sensitivity performance
level that can be obtained, and the limitation worsens
as the sensor delay increases. It is next considered
what, if anything, can be gained by using an estimator
to “cancel out” the sensor delay.
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Fig. 3. The 2-DOF control scheme from Figure 1(c),
with details of the estimator included.

3. ANALYSIS OF THE 2-DOF SETUP

Following previous notation, superscript c is used
to connect closed-loop transfer functions with Fig-
ure 1(c), and the sensitivity function of interest is now

Sc :=
∂T c

ry

∂P
P

T c
ry

.

Before proceeding with the analysis, it is necessary
to introduce minimal state-space realizations for the
plant, delay, and controller shown in Figure 1(c). Let
P[z] have state xp ∈ ℜnp with state-space matrices
(Ap,Bp,Cp,0), let F [z] have state x f ∈ℜn f with matri-
ces (A f ,B f ,C f ,D f ), and let Cc[z] have state xc ∈ ℜnc

with matrices (Ac,Bc,Cc,Dc). Finally, let m = np +n f .

The estimator in Figure 1(c) is assumed to be LTI,
stable, and unbiased. Using the results from Goodwin
and Middleton (1989), the class of all such estima-
tors can be parameterized by a stable proper (vector)
transfer function. Figure 3 shows details of the estima-
tor parameterization, where the estimator parameter
is denoted Qc. The “observer” shown in the dashed
box in Figure 3 is any Luenberger observer, itself a
stable unbiased estimator. The observer provides the
preliminary estimate x̂, where x is the combined state
of P[z] and F [z]:

x :=

[

xp

x f

]

∈ℜm.

The estimator uses x̂ and a filtered version of the inno-
vation process, ym− ŷm, to generate another estimate
of x, this time denoted x̄. Goodwin and Middleton
(1989) prove that any unbiased stable estimator can
be generated by an appropriate choice of Qc (for ex-
ample, the estimate x̂ can be recovered using Qc = 0),
and any choice of Qc generates an unbiased stable
estimator. The final output of the estimator in Figure 3
is an estimate of y, computed by ŷ = G x̄ where

G := [Cp 0] . (12)

Note that G is nonzero since P[z] is not the zero
transfer function.

Due to the structure of the estimator, the estimate ŷ
approaches y as k → ∞. This implies that the separa-
tion principle holds, which, in turn, implies that the



controller Cc = Ca recovers the tracking performance
associated with Figure 1(a). The following theorem
establishes this more formally:

Theorem 3: Consider the control system in Figure 3
with Cc = Ca, with the observer designed to be stable,
and with Qc equal to any stable proper (vector) trans-
fer function. Then the closed-loop system is stable and
“good” tracking performance is achieved, that is,

‖W1T c
re‖∞ ≤ ε1,

where e := r− y is the tracking error.

Proof The closed-loop equations for Figure 3 are
required. To this end, first find a state-space realization
of the cascaded system FP:

x[k +1] = Âx[k]+ B̂u[k]

ym[k] = Ĉx[k],

where

Â =

[

Ap 0
B f Cp A f

]

, B̂ =

[

Bp

0

]

, Ĉ =
[

D f Cp C f
]

.

Note that Â is Schur stable (i.e., all eigenvalues are
inside the unit circle) since F and P are assumed to be
stable.

Next, focus on the dashed box in Figure 3, that is,
on the estimator portion of the control scheme. The
observer equations, with gain H, are

x̂[k +1] = (Â−HĈ)x̂[k]+ B̂u[k]+Hym[k]

ŷm[k] = Ĉx̂.

It is assumed that the observer is designed to be stable,
that is, H is chosen such that (Â−HĈ) is Schur stable.
(Since Â is Schur stable, the choice H = 0 can be used,
for example.) At this point, introduce xq as the state
of Qc, and denote a state-space realization of Qc by
(Aq,Bq,Cq,Dq). Also define ex := x− x̂, and form the
stacked state

xest :=

[

ex

xq

]

.

A straightforward calculation reveals that the estima-
tor satisfies

xest [k +1] = Ãxest [k]

y[k]− ŷ[k] = C̃xest [k],

where

Ã =

[

Â−HĈ 0
−BqĈ Aq

]

, C̃ =
[

G(I−DqĈ) GCq
]

.

Note that Ã is Schur stable since each of (Â−HĈ)
and Aq is Schur stable. Consequently, xest [k]→ 0, and
therefore ŷ[k]→ y[k], as k → ∞.

The closed-loop equations for Figure 3 can now be
written down. In terms of the closed-loop system state
vector

xcls :=









xc

xp

xest

x f









,

the closed-loop equations are

xcls[k +1] = Aclsxcls[k]+Bclsr[k]

y[k] = Cclsxcls[k],

where

Acls =









Ac −BcCp BcC̃ 0
BpCc Ap−BpDcCp BpDcC̃ 0

0 0 Ã 0
0 B f Cp 0 A f









,

Bcls =









Bc

BpDc

0
0









, Ccls =
[

0 Cp 0 0
]

.

Evidently, the closed-loop eigenvalues are the union
of those of A f (which is stable since F [z] is stable),
those of Ã (which is stable, as mentioned above), and
those of

Ā :=

[

Ac −BcCp

BpCc Ap−BpDcCp

]

(which is stable since Ā is the closed-loop “A” matrix
of the stable feedback system in Figure 1(a)). Hence,
the feedback system in Figure 3 is stable.

Lastly, one can use the above closed-loop matrices to
show that T c

ry =Ccls(zI−Acls)
−1Bcls = · · ·= PCc/(1+

PCc). Hence, T c
re = 1−T c

ry = 1/(1+PCa) = T a
re. That

is, the tracking performance of Figure 1(a) is recov-
ered exactly. 2

Having established that, in Figure 3, “good” tracking
performance is achieved with Cc = Ca and with Qc

equal to any stable proper (vector) transfer function,
the closed-loop sensitivity aspect of performance is
now addressed:

Theorem 4: Consider the control system in Figure 3
with Cc = Ca, with the observer designed to be stable,
and with Qc equal to any stable proper (vector) trans-
fer function. Then closed-loop sensitivity is limited by
γN , as defined in (8). That is,

‖W2Sc‖∞ ≥ γN . (13)

Proof: Since P[z] is assumed to be stable, the observer
gain H = 0 can (and will) be used; this choice can be
made without loss of generality, and it simplifies the
calculations considerably. In the special case H = 0,
the block diagram in Figure 3 can be redrawn, after
some simple block manipulation, as in Figure 4. In
Figure 4, a distinction is made between the actual
plant, denoted P[z], and the model of the plant used
in the observer, denoted P0[z]. This distinction is re-
quired to compute Sc, where it is imagined that P[z] is
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Fig. 4. An equivalent representation of Figure 3 in the
special case H = 0.

perturbed around the nominal value P0[z]. A straight-
forward calculation shows that, for Figure 4,

∂T c
ry

∂P
P

T c
ry

=
1+CcP0(1−GQcF)

1+CcP0 +CcFGQc(P−P0)
,

and therefore the sensitivity of T c
ry with respect to

perturbations in P, evaluated at P = P0, is

Sc =
1+CcP0(1−GQcF)

1+CcP0
= 1−T c

ryGQcF. (14)

(Note that T c
ry = P0Cc/(1 + P0Cc) is the closed-loop

transfer function from r to y when P = P0.) Denote the
set of stable and proper m×1 vector transfer functions
by S m. Then, for any particular choice of Qc ∈ S m with
corresponding value of Sc in (14), proceed as in the
proof of Theorem 2:

‖W2Sc‖∞ ≥ min
Qm∈S m

‖W2−W2T c
ryGQmF‖∞

= min
Q∈S

‖W2−W2T c
ryQF‖∞

≥min
Q∈S

‖W2−FQ‖∞

= γN .

(The first equality above follows from the fact that G
in (12) is nonzero.) This completes the proof. 2

Theorem 4 establishes that, although “good” track-
ing is achievable, closed-loop sensitivity in Figure 3
is fundamentally constrained by the presence of the
sensor delay. Interestingly, the performance bound is
the same as in the 1-DOF setup (see Theorem 2). Of
course, Theorem 2 and Theorem 4 are different since
Theorem 2 applies to the 1-DOF configuration where
the free parameter is the Youla parameter, Qb, and
Theorem 4 applies to the 2-DOF configuration where
the free parameter is the estimator parameter, Qc. In
Theorem 2, the performance limitation on sensitivity
applies without regard for tracking performance, but
in Theorem 4 the performance limitation holds un-
der the constraint that “good” tracking performance is
achieved.

As discussed in the 1-DOF setting, a reasonable and
typical choice for W2[z] is a first-order filter of the

form (11). Since the bounds in Theorems 2 and 4 are
identical, the quantitative bounds provided in Figure 2
apply for both the 2-DOF setup and the 1-DOF setup.

4. CONCLUSIONS

In this work it has been proven that, consistent with in-
tuition, there are fundamental performance limitations
associated with feedback sensor delays. Theorems 2
and 4 establish bounds on the achievable closed-loop
sensitivity in the case where the plant is open-loop sta-
ble, in the 1-DOF and 2-DOF control configurations,
respectively. The techniques of this work can also be
used to prove that there are limitations on disturbance
rejection in the face of sensor delays, although these
results are omitted due to space limitations. It may be
of interest to note that the methods in this paper can
be adopted to the continuous-time case, although the
estimator formulation is naturally more complicated.
Finally, in the case where the plant is open-loop un-
stable, it is to be expected that the achievable per-
formance (including tracking) should worsen; finding
meaningful performance bounds in this situation is a
topic of current investigation.

REFERENCES

Chen, Jie, Li Qiu and Onur Toker (2000). Limita-
tions on maximal tracking accuracy. IEEE Trans-
actions on Automatic Control 45(2), 326–331.

Davison, D. E. and E. S. Hwang (2003). Automating
radiotherapy cancer treatment: Use of multirate
observer-based control. In: Proceedings of the
American Control Conference. Denver, CO.

Doyle, John C., Bruce A. Francis and Allen R.
Tannenbaum (1992). Feedback Control Theory.
Macmillan. New York, NY.

Furukawa, Toshio and Etsujiro Shimenura (1983).
Predictive control for systems with time delay.
International Journal of Control 37(2), 399–412.

Goodwin, G.C. and R.H. Middleton (1989). The class
of all stable unbiased state estimators. Systems &
Control Letters 13, 161–163.

Looze, Douglas P. and James S. Freudenberg (1991).
Limitations of feedback properties imposed by
open-loop right half plane poles. IEEE Transac-
tions on Automatic Control 36(6), 736–739.

Middleton, R. H. (1991). Trade-offs in linear control
system design. Automatica 27(2), 281–292.

Mirkin, L. and N. Raskin (2003). Every stabilizing
dead-time controller has an observer-predictor-
based structure. Automatica 39, 1747–1754.

Smith, Otto J.M. (1957). Closer control of loops
with dead time. Chemical Engineering Progress
53(5), 217–219.

Toker, Onur, Jie Chen and Li Qiu (2002). Track-
ing performance limitations in LTI multivariable
discrete-time systems. IEEE Transactions on Cir-
cuits and Systems–I 49(5), 657–670.


