
SOFT COMPUTING APPROACH FOR TIME
SERIES PREDICTION

Yang Gao ∗ Meng Joo Er ∗∗

∗ School of Electronics & Physical Sciences
University of Surrey, UK
yang.gao@surrey.ac.uk

∗∗ School of Electrical & Electronic Engineering
Nanyang Technological University, Singapore

emjer@ntu.edu.sg

Abstract: This paper focuses on the modeling and prediction of nonlinear time
series using a soft computing approach, namely fuzzy neural network (FNN). An
efficient algorithm for model structure determination and parameter identification
with the aim of producing improved predictive performance for noninear time series
is developed. Experiments and comparative studies demonstrate that the proposed
approaches can effectively learn complex temporal sequences in an adaptive way
and they outperform some well-known fuzzy neural methods. Copyright c©2005
IFAC

Keywords: Time series analysis, Prediction problems, Fuzzy logic, Neural
networks, Autoregressive model

1. INTRODUCTION

Time series prediction is an important practical
problem with a variety of applications in business
and economic planning, inventory and production
control, meteorology forecasting, sociology, and
many other fields. In the last decade, neural net-
works (NNs) have been extensively applied for
complex time series processing tasks (Chen et
al., 1991; Platt, 1991; Salmeron et al., 2001). This
is due to their capability to learn and capture
the nonlinear functional dependencies between
past and current values from prior observations.
More recently, fuzzy logic has been incorporated
with the neural models for time series predic-
tion (Cho and Wang, 1996; Chao et al., 1966;
Jang, 1993; Kim and Kasabov, 1999; Kasabov
and Song, 2002). These approaches are generally
known as fuzzy neural networks (FNNs) or NN-
based fuzzy inference systems (FISs) approaches.
FNNs possess both the advantages of FISs, such
as human-like reasoning and ease of incorporat-
ing expert knowledge, and NNs, such as learning

abilities, optimization abilities and connectionist
structures. By virtue of this, low-level learning
and computational power of NNs can be incor-
porated into the FISs on one hand and high-level
human-like reasoning of FISs can be incorporated
into NNs on the other hand.

The FNNs used in this paper are equivalent
to Takagi-Sugeno-Kang-Type FISs. A sequential
and hybrid (supervised/unsupervised) learning al-
gorithm, namely generalized fuzzy neural net-
work (G-FNN) learning algorithm, is employed to
form the FNN prediction model. The proposed
FNN predictors have the following salient fea-
tures: 1) They are capable of modeling complex
time series with on-line adjustment; 2) Fast learn-
ing speed; 3) Self-organizing FNN topology; 4)
Good generalization and computational efficiency.
Various comparative studies show that the pro-
posed approaches are superior to many existing
fuzzy/neural methods.

The rest of the paper is organized as follows.
Section 2 reviews the NARX models and the con-

cept of optimal predictors. Section 3 provides a
mathematical description of the FNN predictors
including the prediction models as well as the
G-FNN learning algorithm for establishing those
models. Two experiments are presented in Sec-
tion 4 to demonstrate the predictive ability of
the proposed methods. The results are compared
with some popular fuzzy/neural methods. Finally,
conclusions and directions for future research are
given in Section 5.

2. NARX MODEL AND OPTIMAL
PREDICTORS

2.1 General NARX(ny,nx) Model

The statistical approach for forecasting begins
with selection of mathematical models to predict
the value of an observation yt using previous ob-
servations. A very general class of such models
is the nonlinear autoregressive model with exoge-
nous inputs (NARX) given by

yt = F[yt−1, . . . , yt−ny , xt−1, . . . , xt−nx] + et(1)

where y and x are output and external input of the
system model respectively, ny and nx are the max-
imum lags in the output and input respectively,
and F is an unknown smooth nonlinear function.
It is assumed that et is zero mean, independent
and identically distributed, independent of past y
and x, and has a finite variance σ2.

2.2 Optimal Predictors

Optimum prediction theory revolves around min-
imizing mean squared error (MSE). Given the
infinite past and provided the conditional mean
exists, the optimal predictor ŷt is the conditional
mean E[yt|yt−1, yt−2, . . .] (Jazwinski, 1970).

Assuming that et is zero mean, independent and
identically distributed, independent of past y and
x, and has a finite variance σ2 in (1), the optimal
predictor for NARX or NARX model can be
approximated as

ŷt = E[yt|yt−1, . . . , yt−ny]

= F[yt−1, . . . , yt−ny , xt−1, . . . , xt−nx] (2)

where the optimal predictor (2) has MSE σ2.

3. FNN PREDICTORS

3.1 FNN Prediction Models

In this paper, FNN predictors are proposed to
emulate optimal predictor in (2). In other words,

the FNN is used to approximate the function F.
Functionality of the FNN is given by

ŷt = FFNN [zt] =
nr∑

j=1

φj(z)wj

=
nr∑

j=1

exp[−(z − cj)T Σj(z − cj)]wj (3)

where z = [z1 . . . zni]T is the input vector, cj =
[c1j . . . cnij]T and Σj = diag(1

σ2
1j

. . . 1
σ2

nij

) are

the center vector and the width matrix of the
Gaussian membership function φj respectively,
wj = k0j + k1jz1 + . . . + knijzni is the TSK-type
weight, kijs are real-valued parameters, ni and nr

are the number of inputs and rules in the FNN
respectively.

Eq. (3) can be represented in matrix form as
follows:

ŷt = ΦT
t wt (4)

where the regression vector Φ = [φ1 φ1z1 . . . φ1zni . . .
. . . φnr φnrz1 . . . φnrzni]T and the weight vector
w = [k01 k11 . . . kni1 k0nr k1nr . . . kninr]

T .

With proper choice of the input vector z, FNNs
can be used to emulate NARX models for time
series prediction. An FNN is a nonlinear approxi-
mation to function F that is equivalent to optimal
predictor in (2) as follows:

ŷt = FFNN{[yt−1 . . . yt−ny xt−1 . . . xt−nx]T }(5)

3.2 G-FNN Learning Algorithm

In this paper, G-FNN learning algorithm is used
to establish the FNN prediction model from prior
time series values. It provides an efficient way of
constructing the prediction model online and com-
bining structure and parameter learning simulta-
neously. Structure learning includes determining
the proper number of rules nr. The parameters
learning corresponds to premise and consequent
parameters learning of the FNN. Premise para-
meters include membership function parameters
cj and Σj , and consequent parameter refers to
the weight wj of the FNN.

Given the supervised training data, the proposed
learning algorithm first decides whether to gen-
erate a rule based on two criteria. If structure
learning is necessary, premise parameters of a new
rule will be determined. The learning will also
decide whether there are redundant rules to be
deleted, and it will change the consequents of
all the rules properly. If no structure learning is
necessary, parameter learning will be performed

to adjust the current premise and consequent pa-
rameters. This structure/parameter learning will
be repeated for each training input-output data
pair.

Two Criteria of Rule Generation: For each
training data pair [zt, yt] : t = 1 . . . nd, where yt

is the desired output or the supervised teaching
signal and nd is the total number of training data,
the system error is defined as et = ||yt − ŷt||. If
et is bigger than a designed threshold Ke, a new
fuzzy rule should be considered.

At sample time t, regularized Mahalanobis dis-
tance is calculated as mdj =

√
[zt − cj]T Σj [zt − cj]

j = 1 . . . nr. The accommodation factor is de-
fined as dt = min mdj . If dt is bigger than

Kd =
√

ln 1
ε , a new rule should be considered

because the existing fuzzy system does not sat-
isfy ε-completeness(Wang, 1997). Otherwise, the
new input data can be represented by the nearest
existing rule.

Pruning of Rules: The Error Reduction Ratio
(ERR) concept proposed in (Chen et al., 1991)
is adopted here for rule pruning. At sample time
t, we have from (4) y = Θw + e, where y =
[y1 y2 . . . yt]T ∈ <t is the teaching signal,
w ∈ <v is the real-valued weight vector, Θ =
[Φ1 . . .Φt]T ∈ <t×v is known as the regressor,
e = [e1 e2 . . . et]T ∈ <t is the system error
vector that is assumed to be uncorrelated with
the regressor Θ, and v = nr(ni + 1).

For any matrix Θ, if its row number is larger
than the column number, i.e. t ≥ v, it can be
transformed into a set of orthogonal basis vectors
by QR decomposition (Press et al., 1992), i.e.
Θ = QR, where Q = [q1 q2 . . . qv] ∈ <t×v has
orthogonal columns, and R ∈ <v×v is an upper
triangular matrix.

An ERR due to qγ can be defined as (Chen et
al., 1991)

errγ =
(qT

γ y)2

qT
γ qγyT y

(6)

The ERR matrix of the FNN is defined as

ERR =

err1 err2 . . . errnr

errnr+1 errnr+2 . . . errnr+nr

...
... . . .

...
errni×nr+1 errni×nr+2 . . . errni×nr+nr

=
[
err1 err2 . . . errnr

]
(7)

Total ERR Terrj , j = 1 . . . nr corresponding to
the jth rule is defined as

Terrj =

√
(errj)T errj

ni + 1
(8)

If Terrj is smaller than a designed threshold 0 <
Kerr < 1, the jth fuzzy rule should be deleted,
and vice versa.

Determination of Premise Parameters: Premise
parameters or Gaussian membership functions
of the FNN are allocated to satisfy the ε-
completeness of fuzzy rules.

In case of et > Ke and dt > Kd, we com-
pute the Euclidean distance edijn = ||zi −
bijn || between zi and the boundary point bijn ∈
{ci1, ci2, . . . , ciNr , zi,min, zi,max}. Next, we find

j̃n = arg min edijn (9)

If edij̃n
is less than a threshold or a dissimilarity

ratio of neighboring membership function Kmf ,
we choose

ci(nr+1) = bij̃n
, σi(nr+1) = σij̃n

(10)

Otherwise, we choose

ci(nr+1) = zi (11)

σi(nr+1) =
max (|ci(nr+1) − ci(nr+1)a

|, |ci(nr+1) − ci(nr+1)b
|)√

ln 1
ε

In case of et > Ke but dt ≤ Kd, the ellipsoidal
field needs to be decreased to obtain a better local
approximation. A simple method to reduce the
Gaussian width is as follows

σij̃ new
= Ks × σij̃ old

(12)

where Ks is a reduction factor which depends on
the sensitivity of the input variables.

In case of the rest, the system has good generaliza-
tion and nothing need to be done except adjusting
weight.

Determination of Consequent Parameters:
TSK-type consequent parameters are determined
using the Linear Least Squared (LLS) method as
w = Θ†y, where Θ† is the pseudoinverse of Θ.
LLS method provides a computationally simple
but efficient procedure of determining the weight
so that it can be computed very quickly and used
for real-time control.

4. EXPERIMENTS AND COMPARATIVE
STUDIES

To demonstrate the validity of our proposed
method, the G-FNN predictor are tested on Box-
Jenkins Gas Furnace Data and chaotic Mackey-
Glass time series. In addition, performances of
the proposed strategies are compared with some

recently developed fuzzy neural methods, includ-
ing FNN methods such as adaptive network-
based fuzzy inference system (ANFIS) (Jang,
1993), RBF-based adaptive fuzzy system (RBF-
AFS) (Cho and Wang, 1996), hybrid neural fuzzy
inference system (HyFIS) (Kim and Kasabov,
1999), and dynamic evolving neural-fuzzy in-
ference system (DENFIS) (Kasabov and Song,
2002), and NN methods such as orthogonal-least-
squares-based RBF network (OLS-RBFN) (Chen
et al., 1991), resource-allocating network (RAN)
(Platt, 1991), pseudo-Gaussian basis function net-
work (PG-BF)(Rojas et al., 2000), and resource-
allocating network using orthogonal techniques
(RANO) (Salmeron et al., 2001) etc.

4.1 Box-Jenkins Gas Furnace Data

In this example, the proposed predictors are ap-
plied to the Box-Jenkins gas furnace data (Box
and Jenkins, 1970), a benchmark problem for test-
ing identification algorithms. This data set was
recorded from a combustion process of a methane-
air mixture. During the process, the portion of
methane was randomly changed, keeping a con-
stant gas flow rate. The data set consists of 296
pairs of input-output measurements. The input
u(t) is the methane gas flow into the furnace and
the output y(t) is the CO2 concentration in the
outlet gas.

To facilitate comparison, the following fitting
model is chosen:

y(t) = F[y(t − 1), u(t − 4)] (13)

As a result, there are in total 292 input/output
data pairs with y(t − 1) and u(t − 4) as input
variables and y(t) as an output variable. The data
were partitioned in 200 data pairs as a training
set, and the remaining 92 pairs as a test set for
validation.

A total of 7 fuzzy rules are generated for the G-
FNN during training as shown in Figure 1(a).
The corresponding Gaussian membership func-
tions with respect to the input variables are shown
in Figure 2. It can be seen that the membership
functions are evenly distributed over the training
interval. This is in line with the aspiration of
“local representation” in fuzzy logic. The root
mean square error (RMSE) is able to converge
very quickly during training as illustrated in Fig-
ure 1(b). As the G-FNN algorithm uses one-pass
learning method to avoid iterative learning loops,
fast learning speed can be achieved. Figure 3
shows the actual and predicted values for both
training and testing data. In this experiment,
performance comparison of the G-FNN predictor
is carried out with three learning models, i.e.

ANFIS, HyFIS and PG-BF. The results are sum-
marized in Table 1. It is shown that the G-FNN
provides better generalization and more compact
rule base.

Fig. 1. Training performances: (a) Fuzzy rule gen-
eration; (b) RMSE during training process.

4.2 Chaotic Mackey-Glass Time Series

Chaotic Mackey-Glass time series is a benchmark
problem that has been considered by a number
of researchers (Cho and Wang, 1996; Chen et
al., 1991; Jang, 1993; Platt, 1991; Salmeron et
al., 2001). The time series is generated from the
following equation

Fig. 2. Gaussian membership functions w.r.t input
variables.

Table 1. Performance Comparisons with ANFIS, HyFIS and PG-BF

Model nr Testing MSE Learning Method

ANFIS 25 0.1643 parameter (iterative loops)
HyFIS 15 0.0945 structure (one pass) + 1 parameter (200 loops)
PG-BF 10 0.157 structure × 2 parameter (one pass)
G-FNN 7 0.0744 structure × parameter (one pass)

1 + implies structure learning and parameter learning are performed offline separately. 2 × implies structure and parameter
learnings are performed simultaneously.

Table 2. Performance Comparisons with RBF-AFS and OLS-RBFN

Model nr np Training RMSE Testing RMSE Learning Method

RBF-AFS 21 210 0.0107 0.0128 structure (one pass) × parameter (iterative loops)
OLS-RBFN 35 211 0.0087 0.0089 structure × parameter (one pass)

G-FNN 10 90 0.0063 0.0056 structure × parameter (one pass)

Table 3. Performance Comparisons with RAN, RANO and DENFIS

Model nr Testing NDEI 1

RAN 40 0.1642
RANO 18 0.1492

DENFIS 883 0.042
G-FNN 8 0.0226

1 Nondimensional error index (NDEI), also known as normalized RMSE, is defined as the RMSE divided by the standard
deviation of the target time series.

Fig. 3. Prediction results: (a) Box-Jenkins gas
furnace data and one-step ahead prediction;
(b) Prediction error.

y(t) = (1 − a)y(t − 1) +
by(t − τ)

1 + y10(t − τ)
(14)

where τ > 17 gives chaotic behavior. Higher value
of τ yields higher dimensional chaos. For the ease
of comparison, parameters are selected as: a = 0.1,
b = 0.2 and τ = 17.

The fitting model of (14) is chosen to be

yt = F[yt−p, yt−p−4t, yt−p−24t, yt−p−34t] (15)

For simulation purpose, it is assumed that yt = 0,
∀t < 0 and y(0) = 1.2. The following values are
chosen: p = 4t = 6 and 118 ≤ t ≤ 1140. The

first 500 input/output data pairs generated from
(14) are used for training the G-FNN while the
following 500 data pairs are used for validating
the identified model.

Using the G-FNN learning algorithm, a total of 8
fuzzy rules are generated for the G-FNN predictor
during training as shown in Figure 4(a). The root
mean square error (RMSE) is able to converge
very quickly using one-pass learning method as
illustrated in Figure 4(b). Figure 5 shows that
the actual and predicted values are essentially the
same and their differences can only be seen on a
finer scale.

Performance comparisons of the G-FNN with
RBF-AFS and OLS-RBFN are shown in Table
2. The G-FNN predictor again forms competi-
tively compact rule base. Another comparison is
performed between G-FNN and some one-pass
also known as on-line learning models, i.e. RAN,
RANO, GNGN, and DENFIS, applied on the
same task (see Table 3). The G-FNN predictor
outperforms these methods in terms of predictive
accuracy as well as computational efficency.

5. CONCLUSIONS

In this paper, a FNN predictor is proposed,
tested and compared. The proposed predictor pro-
vide a sequential and hybrid learning method
for model structure determination and parame-
ter identification which greatly improves predic-
tive performance. Experiments and comparative
studies demonstrate superior performance of the
proposed approaches over some well-known fuzzy
neural methods. Further study is necessary to in-
vestigate the robustness of the proposed methods.

Fig. 4. Training performances: (a) Rule genera-
tion; (b) RMSE during learning process.

Fig. 5. Prediction results: (a) Mackey-Glass time
series from t = 118 to 1140 and six-step ahead
prediction; (b) Prediction error.

One way is to train the prediction models using
different training data groups. If the prediction
models are formed consistently, the proposed G-
FNN method is robust in this sense.

REFERENCES

Box, G. E. P. and G. M. Jenkins (1970). Time Se-
ries Analysis, Forecating and Control. Holden
Day.

Chao, C. T., Y. J. Chen and C. C. Teng (1966).
Simplification of fuzzy-neural systems using
similarity analysis. IEEE Trans. System, Man
and Cybernetic 26, 344–354.

Chen, S., C. F. N. Cowan and P. M. Grant
(1991). Orthogonal least squares learning al-
gorithm for radial basis function network.
IEEE Trans. Neural Networks 2, 302–309.

Cho, K. B. and B. H. Wang (1996). Radial basis
function based adaptive fuzzy systems and
their applications to system identification and
prediction. Fuzzy Sets and Systems pp. 325–
339.

Jang, J. S. R. (1993). Anfis: Adaptive-network-
based fuzzy inference system. IEEE Trans.
System, Man and Cybernetic 23, 665–684.

Jazwinski, A. (1970). Stochastic Processes and
Filtering Theory. Academic Press. New York.

Kasabov, N. K. and Q. Song (2002). Denfis: Dy-
namic evolving neural-fuzzy inference system
and its application for time-series prediction.
IEEE Trans. Fuzzy Systems pp. 144–154.

Kim, J. and N. Kasabov (1999). Hyfis: Adap-
tive neuro-fuzzy inference systems and their
application to nonlinear dynamical systems.
Neural Networks 12, 1301–1319.

Platt, J. (1991). A resource-allocating network for
function interpolation. Neural Computation
pp. 213–225.

Press, W. H., S. A. Teukolsky, W. T. Vetterling
and B. P. Flannery (1992). Numerical Recipes
in C: The Art of Scientific Computing. Cam-
bridge University Press. Cambridge.

Rojas, I., J. Gonzalez, A. Canas, A. F. Diaz, F. J.
Rojas and M. Rodriguez (2000). Short-term
prediction of chaotic time series by using rbf
network with regression weights. Int. J. of
Neural Systems pp. 353–364.

Salmeron, M., J. Ortega, C. G. Puntonet and
A. Prieto (2001). Improved ran sequential
prediction using orthogonal techniques. Neu-
rocomputing pp. 153–172.

Wang, L. X. (1997). A Course in Fuzzy Systems
and Control. Prentice Hall. New Jersey.

