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Abstract: This paper presents a gain scheduling control of a nonlinear system in which
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1. INTRODUCTION

The robust control techniques (McFarlane and K. Glover,
1990; Zhou, et al., 1996) take into consideration un-
certainties due to linearization and/or unmodeled fac-
tors to achieve the stability and performance of the
closed loop system; that is, the control system is de-
signed in order to satisfy robust stability and/or robust
performance conditions. However, if the uncertainties
are beyond a level, the controllers designed by the ro-
bust control techniques no longer satisfy the stability
and the specified performance. Gain scheduling is one
of the candidates to control nonlinear systems whose
dynamics changes with different operating conditions
(Leith and Leithead, 2000; Rugh and Shamma, 2000).
One of the gain scheduling techniques for nonlinear

systems is based on Takagi-Sugeno (T-S) fuzzy model
(Takagi and Sugeno, 1985; Palm, et al., 1997; Tang, et
al., 1998; Hsieh, et al., 2001). In this method, fuzzy
logic is used to construct a T-S model which approx-
imates the behavior of the nonlinear system (Takagi
and Sugeno, 1985). A difficulty in this method is how
to generate proper fuzzy rules according to the nonlin-
ear behavior. For example, in a tracking control prob-
lem of a two-link robot arm, Palm et al. (1997) pre-
pared thirty-six fuzzy rules to construct a T-S model,
while Tang et al. (1998) and Hsieh et al. (2001) ap-
plied the genetic algorithm (GA) to optimize the fuzzy
rules and the membership functions. These techniques
required a great effort to obtain a feasible T-S model
because a number of the GA parameters had to be



decided. In tracking problems of nonlinear systems,
when a reference trajectory is generally given in ad-
vance, it is not necessary to construct a model which
represents a complete behavior of the nonlinear system
but it is enough to model the behaviors of the nonlinear
system near the reference trajectory.

This paper presents a gain scheduling technique for
nonlinear systems whose reference trajectory is given
in advance. Multiple frozen operating times are cho-
sen on the reference trajectory and a linear time in-
variant (LTI) model is obtained at each frozen oper-
ating time. Then, a linear parameter varying (LPV)
model is constructed by interpolating the region be-
tween the neighbor frozen operating times. This mod-
eling avoids the tedious process for generating fuzzy
rules (Palm, et al., 1997; Tang, et al., 1998; Hsieh, et
al., 2001). Using the interpolative LPV model, a gain
scheduling state feedback (GS-SF) law is designed by
a linear matrix inequality (LMI) formulation. The ef-
fectiveness of the proposed method is demonstrated in
a numerical simulation of a tracking control of a two-
link robot arm (Palm, et al., 1997; Hsieh, et al., 2001).

2. INTERPOLATED LPV MODEL

Let us consider a nonlinear autonomous system given
by

ẋ � t ��� f � x � t ��� u � t ��� (1)

where u � t � and x � t � are m-dimensional input and n-
dimensional state vectors, respectively. In this paper,
it is assumed that x � t � is available for feedback. Let
xd � t � and ud � t � be a known state reference trajectory
and a corresponding reference input, respectively. The
objective of control is to track the reference trajec-
tory xd � t � as close as possible. Defining the devia-

tion variables δx � t �
	� x � t ��� xd � t � and δu � t �	� u � t ���
ud � t � , the tracking control problem for the nonlinear
autonomous system Eq. (1) is transformed into the sta-
bilization problem for the nonlinear nonautonomous
system

δ ẋ � t ��� f � x � t ��� u � t ����� f � xd � t ��� ud � t ��� (2)

That is, the objective is to regulate δx � t � to zero; δx � t ���
0 (x � t �� xd � t ��� . Note that ẋd � t � is not necessarily
zero. Since the reference trajectory � xd � t ��� ud � t ��� is
given in advance, it is sufficient to take into consider-
ation the dynamics governed by Eq. (1) near the refer-
ence trajectory. Expanding f � x � u � at � x � u ����� xd � ud �
and approximating it by the constant and the first deriva-

tive terms, Eq. (1) is written as

δ ẋ � t ��� A � xd � ud � δx � t ��� B � xd � ud � δu � t � (3)

where

A � xd � ud � 	� ∂ f � x � u �
∂xT

������
xd � ud � �

B � xd � ud ��	� ∂ f � x � u �
∂uT

���� �
xd � ud �

Let τ be the operating time which identifies the refer-
ence trajectory. It is supposed that the reference trajec-
tory � xd � τ ��� ud � τ ��� is given during the operating range
τ ��� 0 � τe � , where τe is the terminal time of τ. When
operating the control system, τ is essentially the same
as t. It is however convenient that τ is distinguished
from t and is considered as a varying parameter for
constructing an LPV model. Let us choose r frozen
operating times during the operating range as

0  τ1 !#"$"�"%! τr  τe (4)

Then, for these frozen times, LTI models are obtained
as

δ ẋ � t ��� Aiδx � t ��� Biδu � t � (5)

Ai 	� A � xd � τi ��� ud � τi �����
Bi 	� B � xd � τi ��� ud � τi ���� i � 1 � "�"�" � r �

These LTI models are valid near � xd � τi ��� ud � τi ��� . Let
us introduce an interpolation function µ i � τ � which sat-
isfies the following relations:

µi � τ � &''( '')�* 0 � τ �+� τi , 1 � τi - 1 �� 1 � τ � τi� 0 � τ .�+� τi , 1 � τi - 1 � (6a)

µi � τ �/� µi - 1 � τ �0� 1 � τ �+� τi � τi - 1 � (6b)

Then, an interpolative model over τ �1� τi � τi - 1 � is given
by

δ ẋ � t ���#� µi � τ � Ai � µi - 1 � τ � Ai - 1 � δx � t ��2� µi � τ � Bi � µi - 1 � τ � Bi - 1 � δu � t � (7)

There are many candidates of the interpolation func-
tion µi � τ � which satisfies Eqs. (6a) and (6b). A sim-
ple µi � τ � is a linear-type function connecting i-th and� i � 1 � -th LTI models by a straight line as shown in
Fig. 1.

Using above relations, an interpolative LPV model over
τ �+� 0 � τe � is given by

δ ẋ � t ��� r

∑
i 3 1

µi � τ �4� Aiδx � t �/� Biδu � t � �	� A � τ � δx � t �/� B � τ � δu � t � (8)



Fig. 1. Linear-type interpolative function.

Another similar modeling is obtained by a T-S fuzzy
model in which µi 5 τ 6 is given by the fuzzy logic (Palm,
et al., 1997; Tang, et al., 1998; Hsieh, et al., 2001).
Compared to the T-S model, the time-varying factors
in the system are separated from A- and B-matrices in
Eq. (8). Furthermore, the i-th matrices Ai and Bi are
used during τ 728 τi 9 1 : τi ; 1 < . Equation (8) is simpler
than the T-S fuzzy model.

In construction of T-S model described in (Palm, et al.,
1997; Tang, et al., 1998; Hsieh, et al., 2001), the refer-
ence trajectory 5 xd 5 τ 6 : ud 5 τ 6�6 is interpolated by fuzzy
rules. However, it may be assumed that 5 xd 5 τ 6 : ud 5 τ 6�6
is exactly known because the control objective is track-
ing of x 5 t 6 to xd 5 t 6 .

3. DESIGN OF GAIN SCHEDULING

This section describes a design of a gain scheduling
state feedback (GS-SF) law, where the state variable is
supposed to be measurable. A GS-SF law for Eq. (8)
is given by

δu 5 t 6�=#> F 5 τ 6 δx 5 t 6 (9)

If the closed-loop matrix A 5 τ 60> B 5 τ 6 F 5 τ 6 is a sta-
ble matrix over the entire operating region, the closed-
loop system is globally stable. To guarantee the global
stability, consider a parameter-dependent Lyapunov func-
tion

V 5 t 6�= δxT 5 t 6 P 5 τ 6 δx 5 t 6 : P 5 τ 6�? 0 (10)

where P 5 τ 6 is a time-varying positive matrix. Then,
dV @ dt is given by

dV
dt
= ẋT Px A xT Pẋ A xT Ṗx (11)

In this paper, a sufficient condition of the quadratic
stability is given by (Fujimori, et al., 1999)

V̇ 5 t 6CBD> xT 5 Q A FT RF 6 x (12)

where Q 7 ℜn E n F 0, R 7 ℜm E m ? 0 are weighting

matrices and remain to be designed. Letting X 5 τ 6HG=

P 9 1 5 τ 6 and F 5 τ 6 X 5 τ 6IG= M 5 τ 6 , inequality (12) is trans-
formed into the following matrix inequality

He 8 A 5 τ 6 X 5 τ 6�> B 5 τ 6 M 5 τ 6 < > Ẋ 5 τ 6A X 5 τ 6 QX 5 τ 6�A MT 5 τ 6 RM 5 τ 6JB 0 (13)

where He 8 A < G= A A AT . To express matrix inequality
(13) finitely, M 5 τ 6 and X 5 τ 6 are linearly interpolated
as

M 5 τ 6�= r

∑
i K 1

µi 5 τ 6 Mi (14)

X 5 τ 60= r

∑
i K 1

µi 5 τ 6 Xi (15)

Ẋ is approximated as

Ẋ L Xi ; 1 > Xi

τi ; 1 > τi
: τ 7M8 τi : τi ; 1 < (16)

Substituting Eqs. (14), (15) and (16) into Eq. (13)
and using the Schur complement (Boyd, et al., 1994),
LMIs with respect to Xi and Mi (i = 1 :4N�N$N�: r) are de-
rived as follows

Xi O 0 P i Q 1 RTSUSTSVR r W (17)XYYYYYZ He [ AiXi \ BiMi ]\ X j ^ Xi
τ j ^ τi _ _

HXi \ Iq _Mi 0 \ R ^ 1

`$aaaaabdc 0 RXYYYYYZ He [ A jX j \ B jM j ]\ X j ^ Xi
τ j ^ τi _ _

HX j \ Iq _M j 0 \ R ^ 1

` aaaaabdc 0 RXYYYYYYYYZ He [ AiX j e A jXi\ BiM j \ B jMi ]\ 2
X j ^ Xi
τ j ^ τi

_ _
H P Xi e X j W \ 2Iq _Mi e M j 0 \ 2R ^ 1

`$aaaaaaaab c 0

P i Q 1 RTSUSTSVR r \ 1 R j fQ i e 1 W (18)

where rankQ = q and Q = HT H, H 7 ℜq E n, ‘g ’ means
the transpose of the elements located at diagonal po-
sition. The number of LMIs to be satisfied is r A 5 r >
1 6ih 3 = 4r > 3. When Xi and Mi satisfying LMIs (17)
and (18) are found, the feedback gain F 5 τ 6 is given by

F 5 τ 6i=kj r

∑
i K 1

µi 5 τ 6 Mi l j r

∑
i K 1

µi 5 τ 6 Xi l 9 1

(19)

4. SIMULATION RESULT

This section presents a numerical simulation result where
the proposed GS-SF design technique was applied to



a tracking problem of a two-link robot arm shown in
Fig. 2 (Palm, et al., 1997; Hsieh, et al., 2001).

4.1 Two-link robot arm.

The masses of the two links were concentrated at the
ends and the motor inertia are neglected. The equation
of motion of the two-link robot arm was described as

M m x n ẋ m t n/o N m x n�p Lu m t n (20)

where x qpsr q1 q2 q̇1 q̇2 t T was the state vector in-
cluding the angles and the angular velocities of the

two links, u qpkr u1 u u2 t T was a torque vector. M m x n
included the inertia matrix and N m x n was a vector in-
cluding centrifugal, Coriolis, gravitational forces and
damping. They were given by

M v x w�xzy{{{{{|
1 0 0 0

0 1 0 0

0 0 v m1 } m2 w l2
1 m2l1l2 cos v q1 ~ q2 w

0 0 m2l1l2 cos v q1 ~ q2 w m2l2
1

�$��������
N v x w/x y{{{{{{{{{{{|

~ q̇1~ q̇2

m2l1l2 sin v q1 ~ q2 w q̇2
2~ v m1 } m2 w gl1 sinq1 } Kq1

q̇1~ m2l1l2 sin v q1 ~ q2 w q̇2
1~ m2gl2 sinq2 } Kq2
q̇2

� ������������ �
L x y{{{{{|

0 0

0 0

1 0

0 1

� ������ (21)

where mi and li (i p 1 u 2) are respectively the masses
and the lengths of the two links. Kqi

(i p 1 u 2) are the
damping coefficients at the hinges.

The control objective was to track the angles and angu-
lar velocities of the two links to a given reference tra-
jectory as close as possible. Then, the proposed gain
scheduling technique was applied to do this. Numeri-
cal values of the two-link robot arm were given as

m1 p 1 � 5 kg m2 p 1 kg

l1 p 0 � 2 m l2 p 0 � 2 m

Kq1 p 10 kgm2/s Kq2 p 10 kgm2/s

g p 9 � 80165 m/s2

.

..
.

q

q

1

2

Fig. 2. Two-link robot arm.

A reference trajectory was given by

xd m t n�p��������
0 � 5 � 0 � 5sinm πt n

1 � 57 o 0 � 5sin m πt n� 0 � 5π cos m πt n
0 � 5π cos m πt n

�������� (22)

4.2 LPV model.

To derive a linearized equation, M m x n and N m x n were
approximated near the reference trajectory as

M m x n�� M m xd n (23)

N m x n0� N m xd n/o ∂N m x n
∂xT ���� xd

δx (24)

Applying the above approximation to Eq. (20), the
linearized equation was obtained as

δ ẋ m t n�p A m xd n δx m t n�o B m xd n δu m t n (25)

A m xd n�qp�� M � 1 m xd n ∂N m x n
∂xT ���� xd

u
B m xd n qp M � 1 m xd n L

From Eq. (22), the period of the reference trajectory
was 2π � π p 2 sec. Therefore, the range of the op-
erating time was given by τ ��r 0 u 2 t . According to
Section 2, an interpolative LPV model, named as Pl pv,
was then constructed where the frozen operating times
were selected as � τ ��p�� 0 u 0 � 5 u 1 � 0 u 1 � 5 � . For compar-
ison, an LTI model, named as Pf ix, was obtained at
τ p 1 � 0.

To evaluate the model error, the ν-gap metric was used.
The ν-gap metric is originally introduced to discuss
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Fig. 3. ν-gap metric: δν � P� Pf ix � and δν � P� Pl pv � .
the robust stability of LTI systems. It is a measure of
uncertainty including the system. In this paper, the ν-
gap metric was used as a measure for evaluating model
error of the constructed LPV model. That is, it was
desirable that the ν-gap metric of the LPV model was
as small as possible over the operating range. Letting
P1 � s � and P2 � s � be transfer functions of LTI models,
the ν-gap metric between them is defined as follows
(Vinnicombe, 2001):

δν � P1 � P2 �J�� sup
ω

κ � P1 � jω � � P2 � jω ��� (26)

where

κ � X � Y � �� σ � � I � YY � � 1   2 � Y ¡ X � � I � XX � � 1   2 ¢
where σ £¥¤ ¦ means the maximum singular value. The
range of δν � P1 � P2 � is δν § £ 0 � 1 ¦ . The larger δν is, the
further P1 is from another model P2. Using the ν-gap
metric, the model error of an interpolative LPV model
is evaluated with respect to the operating time.

Figures 3 shows the plots of the ν-gap metric δν � P� Pf ix �
and δν � P� Pl pv � with respect to the operating time τ
where P � s;τ � is a transfer function of an LTI model
which is exactly derived at τ. The ν-gap metric was
increased when τ was shifted from the selected frozen
operating times. By increasing the number of the se-
lected frozen operating times r, the maximum value
and the area of δν � P� Pl pv � over τ § £ 0 � 2 ¦ were reduced.

4.3 GS control.

A GS-SF law was designed with Pl pv by the proposed
technique. For comparison, a fixed state feedback (Fix-
SF) law was designed with Pf ix by the LQR technique.

Fig. 4. Control system of two-link robot arm using
GS-SF.

The weighting matrices in Eq. (12) was given by

Q � HT H � R � I2

H �©¨ª 100 0 0 0

0 100 0 0 «¬
Figure 4 shows a block diagram of the control system
where the GS-SF law was implemented. When oper-
ating the system, τ was synchronized with t. The input
to the two-link robot arm was given by

u � t � � ¡ F � t � £ x � t � ¡ xd � t � ¦V� ud � t � (27)

In the GS-SF, the state feedback gain F � t � was changed
with respect to t, while in the Fix-SF, the gain was con-
stant.

Figures 5 and 6 show the plots of tracking errors; that
is, the time responses of the deviation state variable
δx � t � � x � t � ¡ xd � t � in the closed-loop system where
both state feedback laws were applied to the nonlin-
ear equation (20) as shown in Fig. 4. The angles of the
two-link robot arm x1 � t � � q1 � t � and x2 � t � � q2 � t � con-
verged to their references, while the angular velocities
x3 � t � � q̇1 � t � and x4 � t � � q̇2 � t � deviated from the refer-
ences. The responses of q1 � t � and q2 � t � by the Fix-SF
were faster than those by the GS-SF, but an oscillation
was cyclically observed in the responses of x3 � t � and
x4 � t � by the Fix-SF law. It is concluded from these
figures that the constructed LPV model Pl pv appropri-
ately expressed the behavior of the nonlinear equation
(20) along the reference trajectory. The GS-SF law
designed using the LPV showed better tracking per-
formance than the Fix-SF law.

5. CONCLUDING REMARKS

This paper has presented a gain scheduling control of
a nonlinear system in which the reference trajectory
was given in advance. Multiple frozen operating times
were chosen on the reference trajectory and an LTI
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model was obtained at each operating time. An LPV
model was then constructed by interpolating the region
between the neighbor frozen operating times. A GS-
SF law was designed by an LMI formulation. The ef-
fectiveness was demonstrated in a numerical simula-
tion of a tracking control of a two-link robot arm. This
paper has not mentioned how multiple operating times
should be selected. Fujimori et al. (Fujimori, et al.,
2004) proposed a method for selecting the frozen op-
erating times to minimize the interpolative error of the
constructed LPV model.
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