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Abstract: The problem of model-based condition monitoring of aero gas turbine engines 
is considered. Genetic algorithms are applied for the dynamic modelling of aero engines 
by estimating parameters of the linear reduced-order model. The use of genetic 
algorithms affords flexibility in the choice of performance metrics. Real engine data is 
used to investigate the performance genetic algorithms and this approach is compared 
with traditional modelling techniques used in industry. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Gas turbine engines are widely used in many fields of 
human activity and reliable engine condition 
monitoring can produce substantial benefits. 
Condition monitoring of the power plant is especially 
important in aircraft operation, which strongly 
depends on the health of the engine and its control 
system, and where a single fault can lead to 
disastrous results. Benefits of condition monitoring 
include not only improved flight safety but also 
reduced maintenance costs. 

Health monitoring employs direct physical and 
indirect model-based methods for investigating the 
current state of the engine components. Direct 
methods include visual inspection, detecting metal 
particles in lubricant oil, X-ray, vibration and 
ultrasonic examination. Another group of methods 
are based on mathematical modelling of the engine 
operation. Modelling of normal operation and faults 

enables recognition of changes to be conducted 
(Isermann, 1993).  

Of all condition monitoring methods, the model-
based approach is most promising for the real-time 
condition monitoring of such complex systems as 
aircraft gas turbine engines. Mathematical modelling 
methods can detect abrupt and, more importantly, 
gradual changes in the system performance due to 
wear and deterioration of its components  (Basseville 
1988, Isermann 1993, Chen and Patton 1999). 
Additional maintenance following the changes 
detected can prevent serious flight accidents due to 
equipment faults.  

Most current engine condition monitoring systems 
employ static models for diagnosis. However, precise 
condition monitoring must account for the dynamic 
nature of the engine. Utilization of model-based 
approaches for condition monitoring of gas turbine 
engines faces the problem of finding a compromise 
between the complexity of the model and the 



accurate prediction of engine parameters. A very 
complex model is difficult for identification and 
simulation in real time. On-line model-based engine 
fault detection and isolation (FDI) requires reduced 
order engine modelling. 

This paper is focused on application of genetic 
algorithms for on-line dynamic modelling of aero 
engines. The main advantage of genetic algorithms is 
flexibility in selection of an objective function to be 
optimized. This allows to organize the engine 
reduced order model parameters identification based 
on minimisation of the model long term prediction 
error. Real engine data is used to demonstrate 
performance of genetic algorithms in comparison 
with traditional modelling techniques used in 
industry.  

 
2. MODEL-BASED CONDITION MONITORING 

IN DUAL-LANE ENGINE CONTROL 
 
In digital controllers of aero engines, dual-lane 
redundancy is often introduced. These systems 
include two identical sets of transducers, wiring, A/D 
and D/A converters and control computers. This 
hardware redundancy improves the reliability of the 
information measurement channels in the case of a 
single fault. Both lanes simultaneously measure 
engine parameters during the controller operation and 
mutually exchange the current data. This enables 
condition monitoring to be conducted via the 
comparison of the measurements of engine 
parameters gathered from both lanes. One lane is 
controlling the engine operation, whilst the other 
channel is waiting in "hot back-up". 

Consider a dual-lane control system with two 
identical lanes. Experimental data is obtained from 
two information channels, which measure the same 
input and output signals. Figure 1 presents a 
generalized schematic of a gas turbine engine. The 
test was performed at the sea-level static engine test-
bed. Amongst the variables measured, fuel flow into 
the combustion chamber Wf and high pressure (HP) 
and low pressure (LP) shaft speeds NHP and NLP are 
considered.  
 

 
 
Fig. 1. Generalized schematic of gas turbine engine: 

1) fan (LP compressor); 2) HP compressor; 3) 
bypass duct; 4) combustion chamber; 5) HP and 
LP turbines 

 
Since two independent transducers measure the same 
variable, an information redundancy exists. Figure 2 
shows HP shaft speed measurements from both lanes 
and the difference between them. In order to detect 
single-sensor faults like drift and malfunction, the 

maximum allowed measurement difference is 
considered in two lanes, as demonstrated by Kulikov 
et al. (1995). However, this method does not provide 
sufficient information to detect the faulty transducer 
and faults in the engine itself. This problem is 
resolved via accurate modelling of the engine and its 
controller to produce the third "virtual" lane in a 
majority-voting scheme.  

 
Fig. 2. Data from measurement channels (top) and 

difference (bottom) 
 
Explicit modelling of the gas turbine engine is rather 
complex, and its real-time computations are 
extremely intensive, so simplified real-time models 
are required. These models can be obtained by use of 
systems identification methods for modelling of the 
normal engine behaviour. A general scheme 
presented in Figure 3 shows the use of on-board 
engine modelling in condition monitoring of a dual-
lane control system and the lane-to-lane switching 
logic. Note that in the case of a double fault in both 
lanes, the engine control can be temporarily 
performed using the digital model output as a 
feedback. This increases the system reliability. 

 

 
 
Fig. 3. Model-based condition monitoring in dual-

lane control 
 
A generalized scheme of engine model-based 
condition monitoring and diagnostic is presented in 
Figure 4. A simple fault model is the signal 
exceeding the allowed threshold. The total duration 
of fault confirmation and lane switching must not 
exceed the critical time limit for the system. The fault 
confirmation probability Pconfirm increases with the 
time of the parameter being outside the allowed band. 



Simultaneously, the successful switching probability 
Pswitch (fault accommodation) decreases, as shown in 
Figure 5. 

 
 
Fig. 4. Model-based condition monitoring and diag-

nostics 
 

 
 
Fig. 5. Example of fault model and switching proba-

bility 
 
The engine model utilized in condition monitoring 
must be sufficiently accurate and operate in real time. 
These requirements make general engine models 
ineffective, as they do not account for individual 
engine characteristics within the fleet. Individual 
modelling of flight and environmental conditions is 
not always feasible in real time. In order to use 
simplified models for condition monitoring purposes, 
on-line identification must be performed during the 
engine operation. 

 
3. REDUCED ORDER ENGINE MODELLING 

 
On-line model-based engine health monitoring 
requires reduced order engine modelling. The engine 
performance based full thermodynamic model is 
about 26th order. This can vary for different engines. 
This model is very complex to be used in real-time 
applications. Linearisation of this model faces the 
problem of initial model inaccuracy. 

Aero engine operates at a number of power levels at 
different altitudes and Mach Numbers. Engine 
degradation and even fuel quality affect engine 
operation. With this in mind it is necessary to adapt 
the engine model to the engine current operation or 
identify the model parameters on-line.  

In this paper identification based engine health 
monitoring problem is considered. Real engine data 
gathered from normal engine closed-loop operation 

at the engine test-bed and in flight are used to 
perform identification of the simplified dynamic 
model of the engine. It is not possible to apply 
special excitation signals in flight due to safety 
reasons. In addition, it is necessary to monitor 
identifiability conditions for closed-loop 
identification as the engine operates under closed-
loop control. 

Figure 6 shows implementation of the proposed 
condition monitoring scheme. The longest engine 
operating in the flight envelope is cruising. As soon 
as the engine transition to cruise operation is finished 
the engine data are gathered and analysed by the 
system to check closed-loop identifiability 
conditions. If identification is possible then the 
simplified model of this particular engine for current 
operation conditions is identified. This can take 10-
20 sec. Then for some time (up to several hours) this 
model can be used in condition monitoring scheme. 
As soon as the engine operating changes, this process 
should be repeated again to obtain a new model. 

 

 
 
Fig. 6. On-line engine model based FDI scheme 
 
A number of different methods have been 
implemented for identification of the simplest first 
order model of the engine. Engine fuel flow has been 
used as the input of the model and high pressure shaft 
speed has been used as the model output ∆ NHP (t) = 
a. ∆ NHP (t-1) + b. ∆ Wf (t-1).  
 

Table 1 Reduced order engine model parameter 
estimation 

 

Method ε   a b 

Exhaustive search 9.1319 0.9004 0.0123 

Genetic algorithm 
(600 generations) 

9.1324 0.8919 0.0123 

Genetic algorithm 
(100 generations) 

9.1523 0.8988 0.0126 

Gradient method 10.9881 0.9100 0.0109 

Engine thermo-
dynamic model 

linearisation 
19.7420 0.8804 0.0106 

Least Squares 21.6924 0.9069 0.0064 

 
Table 1 shows comparison of different methods 
performance, where ε  is mean squared long-term 
prediction error, a and b are parameters of the model. 
One of the results here is that genetic algorithms and 
gradient method outperform the least squares method 



as the latest minimises only one step ahead prediction 
error.  

The gradient method faces the problem of selecting 
the gradient search parameters, selecting different 
parameters gives different results. Genetic algorithms 
overcome this problem and shows very similar 
performance to the extensive search methods. 
Genetic algorithms can be computationally very 
extensive for implementation in real-time application 
but they produce good results even for a small 
number of generations passed. This requires sensible 
selection of the number of generations to be used. 

Another important result is that parameters of 
obtained models are very close to the performance 
based linear model. This gives confidence in closed-
loop identification and shows that the engine model 
is identified, not the model of the closed-loop. 
 

 
 

Fig. 7. Least Squares approach: engine model output 
(solid) compared with the real engine data 
(dashed) 

 
 

Fig. 8. Recursive estimation (gradient search): engine 
model output (solid) compared with the real 
engine data (dashed) 

 
Figures 7 - 9 show performance of the identified 
models compared with real engine data. It is possible 
to see that even first order model estimated by 
genetic algorithm gives reasonably good performance 

for this particular operating conditions and can be 
used for engine health monitoring. 

 
 

Fig. 9. Genetic algorithms approach: engine model 
output (solid) compared with the real engine data 
(dashed) 

 
4. CONCLUSIONS 

 
This paper presented a concept of gas turbine engine 
on-line identification based fault detection and 
isolation. The proposed technique allows using 
simple dynamic models for the engine health 
monitoring during the engine cruise operation.  

Performance of different methods for identification 
of reduced order engine model has been compared. It 
was shown that genetic algorithms outperform least 
squares and gradient methods generally used in 
industry.  
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