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Abstract: Planned experiments are usually expected to provide maximal benefits
within limited costs. However there are known difficulties in optimal design of
experiments. They are related to the case when only limited number of parameters
could be estimated, because available experiments are the non-informative. The
useful method for this case is considered based on the dominant parameters
selection procedure (DPS). The methodology is illustrated here with data from
five planned experiments related to the NICOLET lettuce growth model. The
maximal number and the list of estimated parameters are determined while the
conditional number of the information Fisher matrix (modified E-criterion) is kept
below a given upper constraint. Copyright c©2005 IFAC.
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1. INTRODUCTION

The model-based control of dynamical processes
often strongly depends on the reliability of the in-
volved models. The costly experiments are carried
in order to provide data for the proper calibration
of the models, it means, to estimate its parame-
ters. The known approach to optimize this pro-
cess is an optimal design of experiments, by find-
ing appropriate inputs, see Kalaba and Springarn
(1971), Fedorov (1971), Goodwin and Payne
(1977), Munack and Posten (1989), and others.
Clearly this method is demonstrated in Kalaba
and Springarn (1973), using one-dimensional dy-
namical system. The criterion maximized is an
integral of the difference between of the square
of the parameter sensitivity (information content)
and the integrated cost of the control during ex-
periment. The model of dynamical system is

dx

dt
= f(x, y, p, t) (1)

where x is a state variable, u is control input, p is
system parameter, and t is time. The sensitivity
of the state variable x to parameter p along the
trajectory is S(t) = ∂x

∂p , and

dS

dt
=

∂f

∂x
S +

∂f

∂p
. (2)

This sensitivity is an additional state variable
in the problem of the optimal design of exper-
iment. According to the Optimal Control The-
ory (OCP) additional equations for correspon-
dent costate variables must be added to the state
variable equations. In performing the experiment
it is desired to obtain maximum benefit from
the observations. The input to the system must
be such that it maximizes the sensitivity of the
state variable to the parameter. The magnitude of
the input should be constrained so that it varies
within feasible region and also its cost will be
limited. The objective function is taken as



I =

T∫

t0

(S2 − gu2)dt, (3)

where g is a weighting coefficient, and the first
term is an one-dimensional simplification for the
Fisher information matrix. The multidimensional
cases are considered e.g. in Vereecken and Van
Impe (1998), Van Impe and Versyck (2000). A
very smart techniques and interesting results are
shown in Keesman and Stigter (2002), and Stigter
and Keesman (2004). In these works some scalar
function of the Fisher information matrix (usually
a modified E-criterion: ratio of the maximal to
the minimal eigenvalue) is used as an indication
of good performance of the experiment. The per-
formance have to be understood in the sense of
the ability to estimate the model parameters. This
approach however leads to a multidimensional op-
timal control problem, where the control inputs
to the system must be found together with state
variables and their sensitivities to all parameters.
Let say there are n state variables and m pa-
rameters. The dimensionality of the problem then
will be n + n × m. In the papers mentioned the
problems are related to biotechnology and the
optimal control problems are of low dimension-
ality and the Fisher matrix is nonsingular. This
is not the case for the range of biological and
environmental models, see Klepper (1971), and
many crop growth models. Calibration of crop
growth models is a very costs and time consuming
operation and it is highly desirable to know in
advance what information will be possible to ex-
tract from the limited set of available experiments.
More definitely the question is: which parameters
it will be possible to estimate. Often not all model
parameters can be successively identified and a try
and error procedure is used to find a reasonable
subset of identifiable parameters. One also must
notice that there arise essential difficulty in the
optimal experiment design when Fisher matrix
is singular. When a subset of parameters can be
found such that the Fisher matrix is nonsingular,
then the method of the optimal design of exper-
iment can be proceeded for this subspace. It will
be shown below how the Dominant Parameter
Selection (DPS) procedure, Ioslovich et al. (2004),
can solve this problem and the evaluation of ex-
periments for the lettuce growth model NICOLET
will be demonstrated.

2. DPS PROCEDURE

The problem of dynamical models identification is
treated in many books and papers, see e.g. Nelles
(2001), Ljung (1999), Goodwin and Payne (1977),
Fedorov (1971). A more general statistical frame-
work can be found in Draper and Smith (1981).

The DPS procedure is described in Ioslovich et al.
(2004), in all details. Let us consider the dynami-
cal system described by differential equations (1),
where x is now a multidimensional state variable
vector, u is a control vector (including controlled
climate) and p is a vector of parameters. The
measurable model outputs Yk(t, x, P ), k = 1, ..., r
are considered along the nominal trajectory x(t)
with nominal values of the system parameters p
and given control inputs u. The column vector
Sj

k(ti) = ∂Yk(ti)
∂pj

is the sensitivity vector of the
model output Yk to parameter pj at the moments
ti when the measurements are planned. These
sensitivities can be found by solving the cor-
respondent linearized time-dependent equations
along the nominal trajectory of the dynamical
system (model), or can be found numerically. The
components of the vector are multiplied by the
weights ωik, which can be chosen in a different
way. Often the time-related index i can be omitted
and weights ωk can be used instead. This is a
usual substitution for unknown inverse covariance
matrix of the measured errors, see Munack and
Posten (1989), Munack (1991). The column vector
Sj will then be a notation for concatenation of
the vectors ωkSj

k. The matrix S is defined as a
horizontal concatenation of the column vectors
Sj . The Fisher matrix can be written as

F = S′ ∗ S. (4)

The rank of the Fisher matrix indicates if the ma-
trix is degenerate and the condition number (ratio
of maximal to the minimal eigenvalue) will indi-
cate if it is ill conditioned. This means that some
of parameters are correlated or almost correlated.
Then the optimization search for the best fit over
the set of parameters will follow the ridge (sub-
manifold) where the different values of parameters
will give the same or almost the same values of
objective. This can occur when sensitivities are
linearly dependent, e.g. only a combination of
parameters can be extracted from the calibration
in the conditions of the experiment. According
to DPS a subset of parameters for the model
calibration must be chosen from the most sensitive
(dominant) and independent parameters. From
the eigenvalues of the Fisher matrix the dimen-
sionality of this subspace can be found as follows.
First an upper threshold α1 for condition number
of the submatrix is selected. Next, the normalized
Fisher matrix is formed according to the rule

Sj
n =

Sj

√
(Sj)′(Sj)

Fn = S′n ∗ Sn, (5)

where Fn is called the normalized Fisher matrix.
Its elements are just cosines of angles between



the normalized sensitivity vectors. Thus each off-
diagonal element of the normalized Fisher ma-
trix is just a scalar product of the correspon-
dent normalized sensitivities. The second upper
threshold α2 is settled to the values of these ele-
ments. Among all correlated pairs for which the
correspondent off-diagonal term of the matrix has
absolute value more then α2 only one parameter of
each pair can be estimated. The candidate param-
eters are chosen from the list of parameters, sorted
in decreasing order according to their squared
sensitivities, means according to the values of the
diagonal elements of the Fisher matrix, F. When
element is examined for inclusion in the subset,
it is first checked if it is correlated with one of
the elements, already included (according to the
normalized Fisher matrix). Then the subset of
chosen candidate parameters must be checked for
the multiple correlation. The correspondent sub-
matrix of the Fisher matrix must be formed and
the eigenvalues are computed. If the condition
number of the sub-matrix is too large according
to the established threshold (i.e. cond > α1),
then the least sensitive parameter is excluded and
the most sensitive among remaining parameter is
included, unless the list of sensitive parameters
will be empty. In this way the maximal parame-
ter subset is found with upper constraint on the
conditional number of the Fisher submatrix. For
crop growth models a logarithmic Least square
Estimation is often used which provide some nor-
malization for data of different age of the expo-
nentially growing crop. In this case the relative
sensitivities

sj
k =

pj

Yk
(
∂Yk

∂pj
) (6)

can be used for the same purpose. The vector sj is
determined in the same way (as concatenation of
the weighted vectors), as the vector Sj , and ma-
trix s is formed as the horizontal concatenation of
the vectors of the column vectors sj . The product
s′ ∗ s will be the modified Fisher matrix Fm. The
advantage of the relative sensitivity is that it is
dimensionless. The normalized matrix also must
be calculated in the same way for modified Fisher
matrix and the same selection procedures must be
hold. We shall demonstrate this approach with the
NICOLET lettuce growth model and evaluation
of the available set of experiments. This procedure
was also used for calibration of different dynamical
models, see Ioslovich et al. (2002), De Graaf et al.
(2004), Bortolin et al. (2002), Linker and Johnson-
Rutzke (2004), etc.

3. THE NICOLET MODEL-SHORT
DESCRIPTION

NICOLET lettuce growth model, Seginer et al.
(1998, 1999), is based on the complementary prop-
erties of nitrate and carbon in the vacuoles. The
calibration of the model was considered in Van
Straten et al. (1999). Several studies with lettuce
produced clear negative linear correlations be-
tween sugar and nitrate in the cell sap. The model
is used for the lettuce growth optimization and
quality control (in terms of the nitrate content).
Several basic assumptions have been done. The
volume occupied by the vacuoles is a fixed fraction
of the total volume of the plant. The nitrogen-
to-carbon ratio in the structure is also fixed. The
ratio in the vacuoles is variable and constrained by
the need to maintain a constant turgor pressure.
Respiration and growth are assumed to depend on
temperature. The nitrate flow into the vacuoles is
calculated from the demand to support growth
and to maintain turgor. The model has two state
variables, the carbon content of the vacuoles and
the carbon content of the structure, MCv and
MCs, respectively. Other components, like nitrate
content in the vacuoles and in the structure, can
be expressed in terms of these state variables. The
state equations of the model are

dMCv

dt
= FCav − FCm − FCg − FCvs,

dMCs

dt
= FCvs, (7)

where FCav is the photosynthetically generated
carbon flux (subscript C) from the atmosphere (a)
to the vacuoles (v); FCm and FCg are the main-
tenance (m) and growth (g) respiration fluxes;
and FCvs is the flux of carbon from the vacuoles
into the structure (s), namely growth. The photo-
synthesis flux, FCav, and the growth flux, FCvs,
are modelled as products of three factors: (i) The
uninhibited flux for a closed-canopy crop, (ii) a
measure of light interception (surface cover) by
the canopy, and (iii) an inhibition function. Thus,

FCav = p{I, CCa}f{MCs}hp{ΓCv},
p{I, CCa}=

εIσCCa

εI + σCCa
,

FCvs = g{T}f{MCs}hg{},
g{T}= νe{T}, (8)

where p{I, CCa} is the gross-photosynthesis rate,
determined by light, I, and by atmospheric (or
greenhouse) CO2 concentration, CCa; g{T} is
the potential growth rate, which is a function of
temperature, T ; f{MCs} is a measure of light
interception,

f{MCs} = 1− exp{−aMCs}, (9)



which approaches one as the canopy closes; and
hp{ΓCv} and hg{ΓCv} are, respectively, dimen-
sionless photosynthesis and growth inhibition
functions, which in the uninhibited state are equal
to one. hp depends on parameters bp and sp, and
hg depends on parameters bg and sg respectively.
The first approaches zero for high values of the
normalized carbon (sugar) concentration in the
vacuoles,ΓCv, while the second approaches zero
for low values of ΓCv. The respiration fluxes were
formulated as

FCm = f{MCs}e{T}, e{T} = kexp{c(T − T∗)}
FCg = θFCvs (10)

where θ is a constant fraction. The nitrate con-
centration in the vacuoles, CNv, can be obtained
from the carbon concentration, CCv, as

ΓCv + ΓNv = 1,

ΓCv =
βCCCv

Πv
,

ΓCN =
βNCNv

Πv
, (11)

where βN and βC are constants and Πv is the os-
motic pressure in the vacuoles. Nitrogen contents
of the vacuole and structure, MNv and MNs, are
related to the state variables MCv and MCs via

MNv =
λΠv

βN
MCs − βC

βN
MCv

MNs = rNsMcs (12)

where λ is the permanent water volume associated
with one unit of structural carbon; rNs is the N
to C permanent ratio in the structure. A nitrogen
balance of the vacuoles has form,

dMNv

dt
= FNrv − rNsFCvs (13)

where dMNv

dt is the rate of change of the nitrate-
N content of the vacuoles, FNrv is the uptake of
nitrate from the rhizosphere. If growth is limited
by nitrate supply, then uptake is equal to supply
and FNrv represents the rate of supply. From (11)
and (12) one can easily get

βNMNv + βCMCv = ΠvVv (14)

and

dMNv

dt
=

λΠv

βN

dMCs

dt
− βC

βN

dMCv

dt
, (15)

where Vv is the volume of the vacuoles per unit
ground area. It is now possible to derive an
expression for the rate of growth, FCvs, in terms
of the limiting supply rate of nitrate, FNrv (and
other quantities). Using Eqn (15) to substitute

for dMNv

dt in Eqn (13) and then substituting for
time derivatives of MCv and MCs from Eqs (7),
an expression for FCvs in terms of the other fluxes
is obtained for the N -limiting case:

FCvs =
βNFNrv + βC(FCav − FCm)
Πvλ + βC(1 + θ) + βNrNs

(16)

Using Eqn(16) completes the modification re-
quired for the nitrate-limited growth. One way
to determine the missing initial condition is to
assume that since the plants are initially small and
the environment constant, growth is balanced and
exponential (EG). The composition of seedlings
growing under such conditions is only a function
of the environment and hence invariant with time.
Therefore the ratio is assumed for the initial data

MCv

MCs
=

dMCv

dMCs
. (17)

4. EVALUATION OF THE AVAILABLE
EXPERIMENTS

A set of the available experiments for estimation
of parameters of the NICOLET model is consid-
ered. In these experiments the normal and the
extreme climate conditions were expected to be
maintained in the greenhouse. The extreme ex-
periments were associated with: low level of the
source inputs, namely light and CO2, and low sink
demand associated with low level of Nitrate sup-
ply and low inside air temperature. All the condi-
tions expected to remain permanent (no day-night
changes) during the period of one month. Daily
measurements of the four outputs were planned.
All the experiments were planned in such a way
that the Equilibrium Growth (EG) conditions in
all cases will be maintained. Following values of
climate inputs were taken as the normal (i.e. sum-
mer conditions in Israel):
Light, I = 20mol[PAP ]m−2d−1

Nitrate supply, FNrv = 0.65mol[N ]m−2d−1

Inside air temperature, T = 24, 47oC
Inside CO2 concentration, CO2 = 0.0353mol[C]m−3

The inside temperature was chosen to get hg = 0.5
from the EG equation (17). Corresponding values
of the Γv and values of the inhibition functions for
the four extreme experiments are shown below.
Source stress conditions:
Low CO2, CCa = 0.005mol[C]m−3, hg = 0.5,
ΓCv = bg,
Low light, I = 8.006mol[PAP ]m−2d−1,
hg = 0.5,ΓCv = bg

Sink stress conditions:
Low temperature, T = 12.62oC, hp = 0.5,
ΓCv = bp,
Low Nitrate, FNrv = 0.0157mol[N ]m−2d−1,
hp = 0.5, ΓCv = bp

Four model outputs were planned to be measured



each day during one month period for these ex-
periments. They are:
FM [gm−2]- fresh mass,
DM [gm−2]- dry mass,
NO3[mg[NO3]kg−1[FM ]] -Nitrate,
Nr[g[N ]g−1[DM ]] - reduced Nitrogen.
Altogether 15 model parameters were analyzed for
possible selection into the Fisher matrix subset
for the estimation. These parameters are related
to photosynthesis (ε, σ), respiration and growth
(θ, k, ν, c), photosynthesis and growth (a), in-
ternal relationships (βN , βC , λ), inhibition func-
tions (bp, sp, bg, sg), Nitrogen to Carbon ratio in
the structure (rNs). One could expect that the low
source growth experiments will permit to identify
some parameters related to the photosynthesis
and growth and/or growth inhibition, and the low
sink growth experiments will permit to identify
some parameters related to the photosynthesis
inhibition and/or N to C ratio in structure. The
sensitivity analysis was done numerically. Relative
sensitivities were calculated (one point per each
day) for each of four outputs along the trajectory
of each planned experiment with nominal values
of parameters. The nominal values of the model
parameters are presented in the Appendix 1. The
results of the analysis of availability of param-
eters estimation are presented for these five ex-
periments separately and also for all experiments
together (as a combined data set) in the Tables
1 − −4. The selection procedure DPS follows its
description in section 2. The thresholds α1 =
0.95, α2 = 40 were used in the DPS procedure. In
Tables 1− 4 for the correspondent treatments the
selected parameters are shown with their number
in the order by decreasing sorting set of the rela-
tive sensitivities and the correspondent condition
number (in brackets) for the Fisher sub-matrices
where these parameters are selected. In the case
when the parameter is the first in the order the
condition number is not indicated (because then
the dimension of the submatrix matrix is one).

Table 1. Normal conditions

k ε rNs

1 2(8.2) 3(10.3)

Table 2. Source limited growth

ε a λ βN rNs

Low Light 1 4(38.2) 3(5.3) 2(1.4)
Low CO2 1 3(5.7) 2(1.1)

For all experiments considered together as a union

Table 3. Sink limited growth

a k bp rNs

Low T 1 2(1.1) 3(1.6)
Low N 3(12.2) 1 2(3.9)

source of the modelled data the results of the

DPS procedure are presented in Table 4. The eight
selected parameters are shown. One can see that

Table 4. All treatments

a k bp ε
1 2(3) 3(4) 4(18)
βN λ σ c
5(18.9) 6(23.8) 7(35.1) 8(35.2)

in Table 4 almost the union of the parameters
selected for the separate treatments is presented.
Generally one can see that different parameters
are selected for the source limited experiments and
for the sink limited experiments. It looks natural
that in both source limited experiments with low
light and low CO2 parameter βN is selected as far
as in this case the nitrate concentration prevails
in the vacuole. On the other hand it is also ex-
pected that parameter bp from the photosynthesis
inhibition function hp is a significant one when
the sink stress occurs as a result of the input
reductions in the case of low temperature and also
for low nitrate experiments. Parameter rNs is an
important one for the constant N to C ratio in
the structure and thus it affects the outputs in
both type of experiments. From the first look it is
not clear why ε is selected in the experiment with
low light and σ is not selected in the experiment
with low CO2. However it can be understood by
consideration of the relative sensitivities of the
photosynthesis p{.} in respect to these parame-
ters. The relative sensitivity of photosynthesis in
respect to ε is inverse proportional to I and the
correspondent relative sensitivity in respect to σ is
inverse proportional to CCa. For the used normal
conditions the product εI is five fold less then
the product σCCa. The same ratio exists between
their relative sensitivities in the experiments with
low I and low CCa respectively. The combination
of multiple experiments together provides more
variability in conditions and thus permits to select
more parameters for the estimation. One can see
that the most wide set of parameters (8 param-
eters) can be extracted from consideration of all
treatments together.

5. CONCLUSIONS

An analysis and evaluation of several planned
experiments for parameters estimation has been
presented. This can be considered as a prelimi-
nary and necessary step for optimal design of ex-
periments that overcome difficulty related to the
Fisher matrix singularity. A simple preliminary
procedure DPS has been used. It gives a sugges-
tion of choosing parameters for estimation as a re-
sult of the future experiment. The procedure was
demonstrated with set of possible experiments
for estimation of parameters of the NICOLET
model. It was shown that the type of experiment



(sink or source limited growth) corresponds to
the selection of the parameters. A combination of
different experiments is more effective rather than
consideration of the separate treatments.
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APPENDIX 1. NOMINAL VALUES

Photosynthesis:
ε = 0.07mol[C]/mol[PAP ]; σ = 1.4× 10−3m/s
Respiration and growth: θ = 0.3; ν = 13.6;
k = 0.147(10−6mol[C]/(m2[ground]s);
c = 0.06931/K
Photosynthesis and growth:
a = 1.7m2/mol[C]
Internal relationships:
βN = 6.0kPa/(mol[N ]/m3);
βC = 0.61kPa/(mol[C]/m3);
λ = 0.833× 10−3m3/mol[C]
Inhibition functions:
bp = 0.8; sp = 10; bg = 0.2; sg = 10
Nitrogen to Carbon ratio in the structure:
rNs = 0.08g[N ]g−1[C]
Conversion : η = 0.030kg[DM ]/mol[C]
Initial condition (fresh mass):
W i

F = 0.0093kg/m2

Arbitrarily fixed: T ∗ = 20oC


