
STABILIZATION OF DISCRETE TIME
SYSTEMS WITH A FOLD OR PERIOD

DOUBLING CONTROL BIFURCATIONS

Boumediene Hamzi ∗ Wei Kang ∗∗

Arthur J. Krener ∗

∗Department of Mathematics, Kerr Hall, UCDavis, One
Shields Avenue, Davis, CA 95616, USA.
email: {hamzi,krener}@math.ucdavis.edu

∗∗ Department of Applied Mathematics, Naval
Postgraduate School, Monterey, CA 93943, USA.

email: wkang@nps.edu

Abstract: For nonlinear control systems with uncontrollable linearization around
an equilibrium, the local asymptotic stability of the linear controllable directions
can be easily achieved by linear feedback. Therefore we expect that the stabiliz-
ability of the whole system should depend on a reduced order model whose stabi-
lizability depends on the linearly uncontrollable directions. The controlled center
dynamics technique, introduced by the authors in a previous article, formalizes this
intuition. In this paper we apply this approach to stabilize discrete-time systems
with a fold or period-doubling control bifurcations. Copyright c©2005 IFAC.
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1. INTRODUCTION

Center manifold theory plays an important role
in the study of the stability of nonlinear systems
when the equilibrium point is not hyperbolic. The
center manifold is an invariant manifold of the
differential (difference) equation which is tangent
at the equilibrium point to the eigenspace of the
neutrally stable eigenvalues. In practice, one does
not compute the center manifold and its dynam-
ics exactly, since this requires the resolution of
a quasilinear partial differential (nonlinear func-
tional) equation which is not easily solvable. In
most cases of interest, an approximation of degree
two or three of the solution is sufficient. Then,
we determine the reduced dynamics on the center
manifold, study its stability and then conclude
about the stability of the original system (Carr
1981). This theory combined with the normal

form approach of Poincaré was used extensively
to study parameterized dynamical systems ex-
hibiting bifurcations (see (Guckenheimer 1983),
(Wiggins 1990) and references therein).

For nonlinear systems with control bifurcations
(see (Krener, Kang and Chang 2001)) a similar ap-
proach was used for the analysis and stabilization
of systems with one or two uncontrollable modes
in continuous and discrete-time (Kang 1998),
(Krener, Kang and Chang 2001), (Hamzi et al.
2001), (Krener and Li 2002), (Hamzi, Monaco and
Normand-Cyrot 2002), (Hamzi and Krener 2003).
This approach was generalized to systems with
any number of uncontrollable modes by introduc-
ing the Controlled Center Dynamics in continuous
time (Hamzi, Kang and Krener 2004a), and in
discrete time (Hamzi, Kang and Krener 2004b).
The Controlled Center Dynamics is a reduced



order control system whose stabilizability prop-
erties determine the stabilizability properties of
the full order system. The approach based on the
controlled center dynamics can also be viewed as a
reduction technique for some classes of controlled
differential (difference) equations. After reducing
the order of these equations, the synthesis of a
stabilizing controller is performed based on the
reduced order control system.

In this paper, we continue the study in (Hamzi,
Kang and Krener 2004b) by deriving the con-
trolled center dynamics and stabilizing discrete
time systems with a fold control bifurcation, i.e.
systems with an uncontrollable mode whose mod-
ulus is slightly greater than one, and systems with
a period doubling control bifurcation. We shall,
also, introduce the discrete-time version of the
bird foot bifurcation introduced in (Krener 1995).
The paper is organized as follows: In section §2,
we review the results on the controlled center dy-
namics, in sections §3 we apply this technique to
stabilize systems with a fold and a period doubling
control bifurcations. We shall treat the bird foot
bifurcation for maps in the appendix.

2. REVIEW OF THE CONTROLLED
CENTER DYNAMICS

Consider the following nonlinear system

ζ+ = f(ζ, v) (1)

the variable ζ ∈ IRn is the state, v ∈ IR is the
input variable. The vectorfield f(ζ) is assumed to
be Ck for some sufficiently large k.

Assume f(0, 0) = 0, and suppose that the lin-
earization of the system at the origin is (A,B),

A =
∂f

∂ ζ
(0, 0), B =

∂f

∂ v
(0, 0),

with

rank([B AB A2B · · · An−1B]) = n− r, (2)

and r > 0. Assume also that the system has n− r
eigenvalues inside the unit disk, and r eigenvalues
on the unit circle. Let us denote by ΣD the system
(1) under the above assumptions.

The system ΣD is not linearly controllable at the
origin, and a change of some control properties
may occur around this equilibrium point, this
is called a control bifurcation if it is linearly
controllable at other equilibria (Krener, Kang and
Chang 2001).

From linear control theory, we know that there
exist a linear change of coordinates and a linear
feedback transforming the system ΣD to

x+
1 = A1x1 + f̄1(x1, x2, u),

x+
2 = A2x2 + B2u + f̄2(x1, x2, u),

(3)

with x1 ∈ IRr, x2 ∈ IRn−r, u ∈ IR, A1 ∈ IRr×r is
in the Jordan form and its eigenvalues are on the
unit circle, A2 ∈ IR(n−r)×(n−r), B2 ∈ IR(n−r)×1

are in the Brunovskỳ form, i.e.

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , B2 =


0
0
...
0
1

 ,

and f̄k(x1, x2, u), for k = 1, 2, designates a vector
field which is a homogeneous polynomial of degree
d ≥ 2.

Now, consider the feedback given by

u(x1, x2) = κ(x1) + K2x2, (4)

with κ a smooth function and K2 = [k2,1 · · · k2,n−r].
Because (A2, B2) is controllable, the eigenvalues
in the closed-loop system associated with the
equation of x2 can be placed at arbitrary given
points in the complex plane by selecting values
for K2. If one of these controllable eigenvalues
is placed outside the unit disk, the closed-loop
system is unstable around the origin. Therefore,
we assume that K2 is such that the following
property is satisfied.
Property P : The modulus of the eigenvalues of
the matrix Ā2 = A2 + B2K2 is less or equal than
one.

Let us denote by F the feedback (4) with the
property P.

The closed loop system (3)-(4) possesses r eigen-
values on the unit circle, and n − r eigenvalues
strictly inside the unit disk. Thus, a center man-
ifold exists. It is represented locally around the
origin as W c = {(x1, x2) ∈ IRr × IRn−r|x2 =
π(x1), |x1| < δ, π(0) = 0}. Furthermore, π and
κ satisfy the nonlinear functional equation

Ā2π(x1) + B2κ(x1) + f̄2(x1, π(x1), κ(x1) + K2π(x1))
= π(A1x1 + f̄1(x1, π(x1), κ(x1) + K2π(x1)))

(5)

The center manifold theorem ensures that this
equation has a local solution for any smooth
κ(x1). The reduced dynamics of the closed loop
system (3)-(4) on the center manifold is given by

x+
1 = f1(x1;κ) (6)

where

f1(x1;κ) = A1x1 + f̄1(x1, π(x1), κ(x1)+K2π(x1))

According to the center manifold theorem, we
know that if the dynamics (6) is locally asymptot-



ically stable then the closed loop system (3)-(4) is
locally asymptotically stable.

The part of the feedback F given by κ(x1) deter-
mines the controlled center manifold x2 = π(x1)
which in turn determines the dynamics (6). Hence
the problem of stabilization of the system (3)
reduces the problem to stabilizing the system (6)
after solving the equation (5), i.e. finding κ(x1)
such that the origin of the dynamics (6) is asymp-
totically stable. Thus we can view κ(x1) as a
pseudo control.
But the equation (5) need not be solved exactly,
frequently it suffices to compute the low degree
terms of the Taylor series expansion of π and κ
around x1 = 0. Because κ starts with linear terms

κ(x1) = K1x1 + κ[2](x1) + . . . (7)

π starts with linear terms

π(x1) = π[1]x1 + π[2](x1) + . . . (8)

The equation (5) implies that

Ā2π
[1] + B2K1 = π[1]A1, (9)

and

Ā2π
[2](x1) + B2κ

[2](x1)
+f̄

[2]
2 (x1, π

[1]x1,K1x1 + K2π
[1]x1) =

π[2](A1x1) + π[1]f̄
[2]
1 (x1, π

[1]x1,K1x1 + K2π
[1]x1),

(10)

and so on.
For any κ[k](x1), these linear equations are solv-
able for π[k](x1) because |σ(Ā2)| < 1 = |σ(A1)|.

For 1 ≤ i ≤ n− r − 1, the ith row of the degree k
equation is

π
[k]
i+1(x1) = π

[k]
i (A1x1) + ζ

[k]
i (x1)− f̃

[k]
2,i (x1)

+
r∑

j=1

π
[1]
i,j(x1)f̃

[k]
1,j(x1).

(11)

The (n− r)th row is

κ[k](x1) = π
[k]
n−r(A1x1) + ζ

[k]
n−r(x1)− f̃

[k]
2,n−r(x1)

+
r∑

j=1

π
[1]
n−r,j(x1)f̃

[k]
1,j(x1)−

n−r∑
i=1

k2,iπ
[k]
i (x1)

(12)

Notice that π
[k]
1 (x1) determines π

[k]
2 (x1), . . . , π

[k]
r (x1),

κ[k](x1). Therefore we may change our point of
view. Instead of viewing κ[k](x1) as determining
π

[k]
1 (x1), . . . , π

[k]
r (x1), we can view π

[k]
1 (x1) as de-

termining π
[k]
2 (x1), . . . , π

[k]
r (x1), κ[k](x1).

In other words, instead of viewing the feedback as
determining the center manifold, we can view the
first coordinate function of the center manifold as
determining the other coordinate functions and
the feedback.

Alternatively we can view π1 as a pseudo control
and write the dynamics as

x+
1 = A1x1 + f̄1(x1;π1). (13)

We shall call this dynamics the Controlled Center
Dynamics.
Now let us write explicitly the solution of equa-
tions (9) and (10).

2.1 Linear Center Manifold

Suppose the entries in K2 are K2,1,K2,2, · · · ,K2,n−r.
Then the characteristic polynomial, p(λ), of the
matrix A2 + B2K2 is defined by

p(λ) = det
(
λI(n−r)×(n−r) −A2 −B2K2

)
= λn−r −K2,n−rλ

n−r−1 − · · · ,K2,2λ−K2,1
(14)

The linear part of the feedback (4) is given by

u(x1, x2) = K1x1 + K2x2 + O(x1, x2)2. (15)

Theorem 2.1. (Hamzi, Kang and Krener 2004b)
Given the feedback F , the center manifold (8) is
given by

x2 = π[1]x1 + O(x2
1)

with the components of π[1] uniquely determined
by

π
[1]
1 = K1p(A1)−1

π
[1]
i = π

[1]
1 Ai−1

1 , for i = 2, · · · , n− r
(16)

where π
[1]
i is the ith row vector in π[1].

The matrix p(A1) is always invertible as discussed
in (Hamzi, Kang and Krener 2004b).

2.2 Quadratic Center Manifold

In the next, we derive the quadratic center man-
ifold. Under a linear change of coordinates given
by

x̃2,i = x2,i − π
[1]
1 Ai−1

1 x1, i = 1, · · · , n− r, (17)

the system (3)-(4) is transformed into

x+
1 = A1x1 + f

[2]
1 (x1, x̃2 + π[1]x1, u(x1, x̃2 + π[1]x1))

+O(x1, x̃2)3

x̃+
2 = A2x̃2 + B2(K2x̃2 + α[2](x1, x̃2 + π[1]x1))

+f̄
[2]
2 (x1, x̃2) + O(x1, x̃2)3

(18)

with f̄
[2]
2 (x1, x̃2) given by



f̄
[2]
2 (x1, x̃2) =

f
[2]
2 (x1, x̃2 + π[1]x1,K1x1 + K2x̃2 + K2π

[1]x1)

−π[1]f
[2]
1 (x1, x̃2 + π[1]x1,K1x1 + K2x̃2 + K2π

[1]x1)

(19)

In the (x1, x̃2) coordinates, the center manifold
has the form x̃2 = O(x2

1). It satisfies the center
manifold equation

Ā2π
[2](x1) + B2κ

[2](x1) + f̄
[2]
2 (x1, 0) = π[2](A1x1)

Let us adopt the following matrix notations,

π
[2]
i (x1) = xT

1 Qix1

f̄
[2]
2,i(x1, 0) = xT

1 Rix1

κ(x1) = xT
1 Lx1

(20)

where Qi, R and L are symmetric r× r matrices.
Let S be the operator defined by

SA1(Q) = AT
1 QA1 (21)

for all symmetric r × r matrices Q.

Theorem 2.2. (Hamzi, Kang and Krener 2004b) If

x2 = π[1](x1) + π[2](x1) + O(x1)3

is the center manifold of (3), then π[2](x1) is
uniquely determined by the following equations:

π
[2]
i (x1) = xT

1 Qix1, for i = 1, 2, · · · , n− r

where

Q1 = p(SA1)
−1

L + Rn−r +
n−r∑
i=2

i−2∑
j=0

K2,iSj
A1

(Ri−j−1)


and

Qi = Si−1
A1

(Q1)−
i−2∑
j=0

Sj
A1

(Ri−j−1)

in which SA1 is the operator defined by (21); Ri

is from the quadratic dynamics and it is defined
by (20) and (19); L is from the quadratic feedback
and it is defined by (20), and p is the characteristic
polynomial of Ā2.

We can also show that the operator p(SA1) is al-
ways invertible (Hamzi, Kang and Krener 2004b).

3. STABILIZATION OF SYSTEMS WITH A
FOLD OR PERIOD DOUBLING CONTROL

BIFURCATION

In this section we use the precedent results to
stabilize systems with a fold or period doubling

control bifurcation i.e. those where the system has
a single uncontrollable mode, λ ∈ IR, such that,
|λ| > 1 or λ = −1, respectively.

When there is only one uncontrollable mode λ /∈
{0, 1} in (3), we know, from (Hamzi, Barbot
and Kang 1998),(Krener and Li 2002), that there
exist a cubic change of coordinates and feedback
bringing the system to its cubic normal form

z+
1 = λz1 + γz1z21 +

r+1∑
i=1

δiz
2
2i + γ̄z2

1z21 +
r+1∑
i=1

δ̄iz1z
2
2i

+
r+1∑
i=1

r+1∑
j=i

ε̄ijz21z2jz2i + O(z1, z2, v)4,

z+
2 = A2z2 + B2v + O(z1, z2, v)2,

(22)

with z2,r+1 = v. We know also that this sys-
tem exhibits a control bifurcation provided the
transversality condition δ̃ =

∑r+1
i=1 (1+λi−1)δi 6= 0

is satisfied (Krener and Li 2002). Let δ̂ =
∑r+1

i=1 δi.

Suppose that we use the piecewize linear feedback

v = K1z1 + K2z2, (23)

with K1 =
{

k̄1, z ≥ 0
k̃1, z < 0

.

Theorem 3.1. Consider the system (22). If γδ̃δ̂ 6=
0, then the feedback (23) practically stabilizes the
system (22) around the origin when λ > 1 or
λ < −1. The feedback asymptotically stabilizes
the system around the origin when λ = −1.

Proof. Let us write λ as λ = (1+ε)sign(λ), with ε
is a slightly positive number. If we consider ε as an
extra state whose equation is ε+ = ε, the term εz1

will be considered of order two. Then, the linear
part of the closed loop system (22)-(23) has the
form

ε+ = ε,
z+
1 = sign(λ)z1 + O(z1, z2, ε)2,

z+
2 = Ā2z2 + O(z1, z2)2.

(24)

Hence, for the closed loop system (22)-(23), a
center manifold exists. It is defined by z2 =
π(ε, z1). Since there is no linear term in ε in the
z1−subdynamics of the system (24), the linear
part of the center manifold can be written as

z2 = π[1]z1.

¿From (16), the components of π[1] are given by

π
[1]
i = π

[1]
1 , i = 2, . . . , r,

K1 = p(sign(λ))π[1]
1 ,

(25)



since A1 =
[

1 0
0 sign(λ)

]
for the dynamics in

the (ε, z1, z2) space. Thus, the controlled center
dynamics is

z+
1 =

{
λz1 + Φ(π̄[1]

1 )z2
1 + O(z1)3, z1 ≥ 0,

λz1 + Φ(π̃[1]
1 )z2

1 + O(z1)3, z1 < 0.

with Φ(X) = X(γ + δ̂X), π
[1]
1 = k̄1

p(sign(λ)) , and

π̃
[1]
1 = k̃1

p(sign(λ)) .

Since γ 6= 0 and δ̂ 6= 0, there are two distinct
solutions for the equation Φ(π[1]

1 ) = 0, hence
Φ(π[1]

1 ) changes its sign. So we can choose π
[1]
1

and π̃
[1]
1 such that Φ(π[1]

1 ) = −Φ(π̃[1]
1 ) = −Φ0,

with Φ0 > 0 if λ > 1, and Φ0 < 0 if λ < 1. In this
case, the controlled center dynamics will have the
form

z+
1 = λz1 − Φ0|z1|z1 + O(z1)3, (26)

which is the normal form of the supercritical bird
foot bifurcation for maps, as discussed in the
appendix.

For λ such that λ /∈ {0, 1}, the origin is unstable
for λ > 1 or λ < −1, and the two other equilib-
rium points z̄∗ = λ−1

Φ0
, z̄∗∗ = −λ−1

Φ0
= −z̄∗, when

they exist, are stable. So, the solution converges
to z̄∗ or z̄∗∗. Hence, by making z̄∗ sufficiently close
to the origin, i.e. by choosing Φ0 sufficiently large,
we shall have practical stability for the origin of
the controlled center dynamics. We can show that
this implies practical stability of the origin of the
system (22).

When λ = −1, the controlled center dynamics
(26) reduces to

z+
1 = −z1 − Φ0|z1|z1 + O(z1)3.

If we use the Lyapunov function V (z1) = z2
1 , then

∆V = V (z+)− V (z) = 2Φ0|z1|z2
1 + O(z3

1).

Hence choosing Φ0 < 0, permits to ensure that
the origin is asymptotically stable.

Now let us consider the quadratic feedback

v = K1z1 + K2z2 + κ[2](z1) (27)

instead of the feedback (23). The coefficient K2 is
such that |σ(A + B2K2)| < 1.

Theorem 3.2. Consider the system (22). If γδ̃ 6= 0,
then the feedback (27) with K1 = 0 practically
stabilizes the system (22) around the origin when
λ > 1 or λ < −1. It asymptotically stabilizes the
system around the origin when λ = −1.

Proof. Adopting the same approach as prece-
dently we show the existence of a center manifold

in the (ε, z1) plane. The feedback (27) shapes the
linear and quadratic parts of the center manifold

z2 = π[1]z1 + π[2](z1)

which in turn shape the quadratic and cubic parts
of the controlled center dynamics given by

z+
1 = λz1 + Φ(π[1]

1 )z2
1 + O(z3

1).

Since the equation Φ(X) = 0 admits zero as a
solution, we can choose the solution π

[1]
1 = 0,

which gives K1 = 0 from (25). Then, by choosing
π

[2]
1 (z1) = cz2

1 arbitrarily, we deduce that the
controlled center dynamics is given by

z+
1 = λz1 + γcz3

1 + O(z1)4. (28)

Since |λ| > 1, the origin is unstable. If we choose
c such that (1 − λ)γc > 0, the two equilibrium

points ẑ∗ =
√

1−λ
γc and ẑ∗∗ = −

√
1−λ
γc , when they

exist, are stable. The controlled center dynamics
(28) has the form of a system with a supercritical
pitchfork bifurcation. Since the solution converges
to one of the equilibrium points ẑ∗ or ẑ∗∗, the
origin of the controlled center dynamics can be
made practically stable by having the equilibrium
points ẑ∗ and ẑ∗∗ sufficiently close to the origin.
We can show that this implies practical stability
of the origin of the system (22).

When λ = −1, the controlled center dynamics
(28) reduces to

z+
1 = −z1 + γcz3

1 + O(z4
1).

We see that choosing c such that γc > 0 permits
to ensure that the origin is asymptotically stable.

The piecewize linear feedback (23) is more robust
than the quadratic feedback (27). Indeed, using
the quadratic feedback (27) requires having the
exact solutions of the equation Φ(π[1]

1 ) = 0. If
there exists a small uncertainty on the invariants γ
and δi (with i = 1, · · · , r+1), the quadratic terms
generated by the uncertainty in the controlled
center dynamics (28) will be a source of instability
of the system. Using the piecewize linear feedback
(23) does not necessitate the exact solutions of the
equation Φ(π[1]

1 ) = 0, as we just have to find π
[1]
1

and π̃
[1]
1 such that Φ(π[1]

1 )Φ(π̃[1]
1 ) < 0. Thus the

piecewize linear feedback is more robust.

4. APPENDIX: THE BIRDFOOT
BIFURCATION FOR MAPS

In this section we analyze the discrete-time ver-
sion of the “bird foot bifurcation” (see (Krener
1995) for a treatment of the continuous-time



case).
Consider a dynamical system

x+ = µx− Φ̂0x|x|+ O(x3), (29)

with x ∈ IR, µ ∈ IR a parameter, and Φ̂0 ∈ IR\{0}
a constant. The fixed points of the system are the
solutions of the equation

((1− µ) + Φ̂0|x|)x = 0.

Provided µ sufficiently close to one or Φ̂0 suffi-
ciently large, and that (µ − 1)Φ̂0 > 0, the dy-
namical system has three fixed points: the origin,
x∗ = µ−1

Φ̂0
, and x∗∗ = −µ−1

Φ̂0
= −x∗. If µ = 1, the

dynamical system has the origin as the only fixed
point.

Let us consider the Lyapunov function V (x) = x2,
then

∆V = V (x+)−V (x) = (µ2−1)x2−2Φ̂0µ|x|x2+O(x4).

If |µ| < 1, then ∆V < 0 and the origin is an
asymptotically stable equilibrium point. If |µ| >
1, then ∆V > 0 and the origin is an unstable
equilibrium point.

When Φ̂0 > 0 (resp. Φ̂0 < 0), the equilibrium
points x∗ and x∗∗ appear when µ > 1 (resp. µ <
1). For µ sufficiently close to one, the equilibrium
points x∗ and x∗∗ are unstable when the origin
is asymptotically stable, and are asymptotically
stable when the origin is unstable. As for the
pitchfork bifurcation, we have an exchange of the
stability properties, at µ = 1, between the origin
and the two equilibrium points x∗ and x∗∗.
If µ = 1, the origin is the only equilibrium point.
It is asymptotically stable when Φ̂0 > 0, and
unstable when Φ̂0 < 0. When Φ̂0 > 0, we shall call
the bifurcation a supercritical bird foot bifurcation.
When Φ̂0 < 0, we shall call the bifurcation
subcritical bird foot bifurcation.

When Φ̂0 > 0 (resp. Φ̂0 < 0), and µ > 1 is
sufficiently large, the three fixed points become
unstable (resp. stable), and stable (resp. unstable)
cycles appear (see (Guckenheimer 1979)).
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