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Abstract: In this paper, a neural network based adaptive sliding mode control scheme for 
hysteretic systems is proposed. In this control scheme, a neural network model is utilized 
to describe the characteristic of hysteresis. Then, the adaptive neural sliding mode 
controller based on the proposed neural model is presented for a class of single-input 
nonlinear systems with unknown hysteresis. For the case where the output of hysteresis is 
unmeasurable, the neural network model is applied to estimate the effect of hysteresis. 
Based on the model-based estimation, the effect of hysteresis on the performance of the 
system is compensated. Copyright © 2005 IFAC 
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1. INTRODUCTION 
  
Usually hysteresis exists in piezoelectric actuators 
which are often used for micro-position devices in 
precision manufacturing engineering. However, 
hysteresis inherent in piezoelectric actuator severely 
constrains the performance of the system. It may result 
in undesirable accuracy or oscillations. The features of 
hysteresis are generally non-smooth and usually 
unknown. Thus it is a difficult task to remove its 
harmful effects by using traditional control strategies. 
Recently, Hwang et al (2001) used two neural 
networks to construct the inverse model of each 
branch of a single-loop hysteresis in order to 
implement the hybrid strategy consists of an 
intelligent variable-structure control and feedforward 
control. Tao and Kokotovic (1995) developed an 
adaptive inverse control scheme based on a simplified 
hysteresis model to cancel the effect of hysteresis. 
Ping Ge and Jouaneh (1996) developed a PID 
feedback control with an inverse static hysteresis 
model in the feedback loop. Selmic and Lewis (2001) 
proposed a back-stepping technique with an inverse 
backlash model for compensating the backlash 
nonlinearity, which is a special case of hysteresis. The 
drawback of the above-mentioned control schemes is 
that the direct inverse models have to be constructed 

to cancel the effects of hysteresis. However, in 
practice, the hysteresis hides in the plants or actuators 
so that it usually cannot be measured directly. Hence 
the control schemes depending on the inverse models 
in terms of the measured outputs of hysteresis will be 
very difficult for implementation. Generally, 
hysteresis contains more than one loops, the 
construction of the direct inverse model for multi-loop 
hysteresis will be very complex and difficult.  
 In order to compensate for the effect of hysteresis, a 
transform is developed to decompose the multi-valued 
mapping between the output and input of hysteresis 
into non-multivalued mapping. Then, a neural network 
is utilized to identify hysteresis based on the 
decomposition results. Under the assumption that plant 
states are all measurable, an adaptive sliding mode 
controller based on proposed neural model is proposed 
for the nonlinear plant preceded by unknown 
hysteresis.  
  

2. SYSTEMS WITH HYSTERSIS 
  

Consider a SISO nonlinear plant preceded by 
hystersis characteristic [ ]H ⋅  
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where ( )y t is the output; 1 2[ , ]Tnx x x x= is the state 
vector; ( )v t  is the control input; ( )u t  is the output of 
the actuator containing hysteresis which can be 
described by Preisach model (Polycarpou, 1996), and 

( , )f x u is a smooth function that satisfies 0f
u

∂
∂ ≠ . The 

notation [ ]( )H tν  denotes that the operator is 
dependent on the trajectory ( )v t , which is not an 
instantaneous value. 
The control objective is to design a control law for 

( )v t  to force the plant output ( )y t  to follow a smooth 
prescribed trajectory ( )dy t . The desired states are 
defined as  

( 1)( ) [ , , ]n T
d d d dx t y y y −=                                       (2) 

with ( 1)n
dy −  the ( 1)thn −  derivative. The tracking errors 

are defined as 
[ ]1 2, T

n de e e e x x= = − .                                     (3) 
Assumption 1: ( )( ), nT

d dx y d≤  where d>0. 

  
3. MODELING HYSTERSIS 

  
Control of a system with hysteresis nonlinearity is 
difficult for its non-differentiable and multi-valued 
property. In order to describe hysteresis nonlinearity, 
various mathematical models have been proposed. 
Among them, Preisach model is the most popular 
model for the control design. This model can be 
described as  

( ) [ ]
( )

( ),
,

( ) [ ]( ) ,
S

u t H v t v t d dα β
α β

µ α β γ α β
∈

= = ∫∫    (4) 

where )]([, tvβαγ  is the hystersis operator with α  and 

β  corresponding to up and down switching values 
respectively. The operators are either +1 or -1. 

( , ) : S Rµ ⋅ ⋅  is the weight function; 
( ){ }min max, ( ) ( )S v t v tα β β α= ≤ ≤ ≤ is the triangle region, 

which can be subdivided into two time-varying sets, 
i.e.   

( ){ },: , [ ]( ) 1S S v tα βα β γ+ = ∈ = + ; ( ){ },: , [ ]( ) 1S S v tα βα β γ− = ∈ = − . 

min ( )v t  and max ( )v t  are the minimal and maximal 
value of v(t) for t ∈  ( , ]t−∞ . Therefore, min ( )v t  and 

max ( )v t  are varied as time t changes. 
Using the definition of +S and −S , (4) can be written 
as  

( ) ( )[ ]( ) , ,
S S

H v t d d d dµ α β α β µ α β α β
+ −

= −∫∫ ∫∫ .    (5) 

From (5), one can see that Preisach model depends 
only on the interface [ ]( )B v t  between S + and S− . 
Therefore, a mapping Ψ  is introduced to express the 
correspondence between Preisach model and [ ]( )B v t  

( )[ ]( ) [ ]( )H v t B v t= Ψ                                          (6) 
Definition 1: For the given input ( )v t , two 

boundaries 1[ ]( )B v t  and 2[ ]( )B v t  formed respectively 
at time 1t  and 2t are called equal if the dominant 
extrema and current value 1( )v t , which forms the 
interface 1[ ]( )B v t , is equal to those of 2[ ]( )B v t . One 
describes the relationship between two boundaries in 
simple form as 

1 2[ ]( ) [ ]( )B v t B v t= .                                             (7) 
Remark 1: The dominant extrema are defined as the 
extrema of input v(t), which consist of the integral 
boundary [ ]( )B v t . 
For ( )v t  decreases or increases monotonically in 
[ ],t t t+ ∆  ( t∆ >0), (5) becomes 
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     (8) 

( ) ( )[ ]( ) , ,
te te

e
S S

H v t d d d dµ α β α β µ α β α β
+ −

= −∫∫ ∫∫         (9) 

where 0v > or 0v ≤ is just to show v(t) is monotonic 
signal in [ ],t t t+ ∆ . et is the time at which ( )e ev tα = or 

( )e ev tβ =  is the past dominant extremum adjacent to 
( )v t . teS +  and teS − are the integral area at time et , 

which keeps unchanged for [ , ]t t t t∈ + ∆ . From (8), 
one obtains the derivative 
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From what is stated above, it is known that the 
relationship between the input and output of Preisach 
model is a multi-valued mapping. Hence it is quite 
difficult to utilize the conventional technique to 
determine ( , )µ α β in Preisach model since the 
conventional methods of system identification cannot 
handle the case of the systems with multi-valued 
mappings. However, we know that hysteresis 
described by Preisach model depends on its integral 
boundary B[v](t). So that, we will give assumption 2 
and lemma 1 shown in the following to set up a 
relationship between the output of hysteresis and the 
coordinate that represents the integral boundary. 
Assumption 2: Let ( ) ( )v t C R+∈ , where { 0}R t t+ = ≥ , 
and ( )C R+  is the set of continuous functions on R+. 
Define a transform operator [̂ ]( )h v t  generated by 
Preisach model in a special case with a positive, 
bounded and piecewise continuous weight 
function ( )ˆ ,µ α β , if there exist 1t  and 2t ( 1 2t t≠ ), such 
that 1 2( ) ( )v t v t= , [ ] 1 2

ˆ ˆ( ) [ ]( )h v t h v t= , and 
1 2

sgn( ) sgn( )t tv v=  

but 1 2[ ]( ) [ ]( )B v t B v t≠ , the most adjacent and dominant 
extremum of 1( )v t  and that of 2( )v t  are not equal. 
From (10), the assumption is equivalent to: 

1 2

ˆ ˆ[ ] [ ]
t t t t

dh v dh v
dv dv= =≠ .                                         (11) 

Lemma 1: For a given input ( )v t  and the transform 
operator ˆ[ ]h ⋅  satisfied assumption 2, then there exists 
an invertible mapping Γ  such that  



     

( )
ˆ[ ]ˆ( ), [ ]( ),sgn( ) [ ]( )t

dh vv t h v t v B v t
dv

⎛ ⎞
= Γ⎜ ⎟⎜ ⎟

⎝ ⎠
.          (12) 

Theorem 1: For any hysteresis [ ]H ⋅ described by 
Preisach model, there exists a mapping F : 3R R  
such that  

ˆ[ ]ˆ[ ]( ) ( ), [ ]( ),sgn( ) t
dh vH v t v t h v t v

dv
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

F            (13) 

where ( )v t  and [̂ ]( )h v t  satisfy the assumption 2.  
The proof of Lemma 1 and theorem 1 are omitted. 
Please refer to (Li and Tan, 2004). 
  

4. SLIDING MODE CONTROL 
  
Define a scalar function as follows to describe the 
dynamics of tracking error  

1

1( ) ( ) [ ,1] ( )
n

Tds t e t e t
dt

λ
−

⎛ ⎞= + = Λ⎜ ⎟
⎝ ⎠

                       (14) 

with λ  is a positive constant and 
( 1)( 2)1 2 3

2[ , ( 1) , , ( 1) ]n nn n n Tn nλ λ λ λ− −− − −Λ = − − . The 
sliding surface ( ) 0s t =  represents a linear differential 
equation whose solution implies that ( )e t  converges to 

zero with time constant 1n
λ
− ( Wei and Sun 2000). 

Differentiating (14) with respect to time and using (1) 
and(3), we obtain 

 ( )( ) ( , ) 0, ( )n T
ds t f x u y e t⎡ ⎤= − + Λ⎣ ⎦

.                        (15) 

Since the function ( , )f x u and hysteresis nonlinearity 
may not be known, an invertible function ˆ ( , )f x v  is 
introduced. By adding and subtracting ˆ ( , )f x v  to (15), 
the system can be expressed as 

( )( ) ( , , ) [0, ] ( ) nT
ds t f x u v e t yδ= + + Λ −                     (16) 

where ˆ ( , )f x vδ = is the pseudo-control input; 
1ˆ ( , )v f x δ−=  ; and ˆ( , , ) ( , ) ( , )f x u v f x u f x v= − . The 

function ˆ( , )f x u , which is invertible with respect to its 
second argument u, represents any available 
approximation of ( , )f x u . It may be constructed from 
approximately linear models. Additional requirements 
on ˆ( , )f x u  will be specified latter.  
For the modeling of hysteresis u=H[v], some 
difficulties may be encountered due to its output is 
usually unmeasurable directly and its properties of 
multivalued mapping. In order to handle the problem 
of hysteresis’ output is unmeasurable directly, in this 
paper, we propose a method to estimate the effect of 
hysteresis through the residual ( , , )f x u v .  Therefore, 
we apply neural networks to implement the 
approximation of ( , , )f x u v . A three-layer neural 
network, which is consisted of n2-hidden neurons and 
n3-output neurons with linear output activation 
functions, can be described in term of vectors as 

( )T T
nny W V xσ=                                                   (17) 

where ,[ ]i jV V=  
11,2,i n= , 

20,1j n= ; 
and ,[ ]j kW W=  31,2k n= ; are the interconnecting 
weight matrices, ( )σ ⋅  is the sigmoidal function. 
In order to tackle the problem of multivalued mapping 
in the procedure of using neural networks for 

hysteresis modeling, in terms of theorem 1, we obtain 
that ( )ˆˆ( , , ) , , ( , [ ],sgn( ) )dh

dvf x u v f x v v h v v= F . 

Lemma 2: For a given 0Nε > , there exists a set of 
bounded weights W and V , such that model 
error ( )ˆˆ, , ( , [ ], sgn( ) )dh

dvf x v v h v vF  can be approximated over 

a compact set 2nR +Ω ⊂  by a three-layer feedforward 
neural network  

( )ˆˆ( , ( , [ ],sgn( ) ), ) ( ),

( ) ,

T Tdh
nn nndv

nn N

f x v h v v v W V x x

x

σ ε

ε ε

= +

≤

F     (18) 

where 
[ ]ˆ ˆ[1, ( ), , ( ), [ ]( ), , ( ), , ]Tnn dx v t v t md h v t h v t md x e= − − ; v 

and ˆ[ ]h ⋅ satisfy assumption 2. 0d >  is the time delay; 
1m ≥ , ( )nnxε  is the approximation error; W and V are 

the optimal weights that minimize ( )nnxε  for all 
2( ) 3n m

nnx R + +∈Ω ⊂ . The proof of lemma 2 is omitted 
(Barron, 1993; Calise et al, 2001). 
Remark 2: Lemma 2 shows that neural network can 
directly be applied to estimate the influence of 
hysteresis which hidden in the residual ( , , )f x u v . 
Based on Lemma 2, one is able to construct a 
compensator to eliminate the hysteresis influence 
without relying on the inverse model and measuring 
output of hytsteresis.  
Assumption 3: The optimal weights W  and V  are 
respectively bounded by pW and pV , i.e. pFW W≤  and 

pFV V≤ , with pW and pV are known positive values, 
where F⋅  represents Frobenius norm. 
 Define the pseudo-control as 

( ) ( ) 0, ( )n T
ad rdy Ks t e tδ δ δ⎡ ⎤= − − Λ − +⎣ ⎦

               (19) 

where rδ  is a robust term selected for disturbance 
rejection; K  is a positive gain; and adδ is the output of 
the neural network used to approximate the model 
residual f , i.e. 

( )ˆ ˆT T
ad nnW V xδ σ=                                               (20) 

where Ŵ  and V̂ are the estimates of the optimal 
weights W  and V . The controller architecture is 
shown in Fig. 4. From (16) and (19), ( , , )f x u v  depends 
on adδ  through u , v . However, adδ  is designed to 
cancel the effect of ( , , )f x u v . This requires the map 

ad fδ  is a contraction, which holds under conditions: 
ˆsgn sgnv vf f= and 1

2
ˆ0 v vf f< <  (Hovakimyan et al, 

2002; Calise et al, 2001) with ( , )f x u u
v u vf ∂

∂ ∂= , ˆ ( , )ˆ f x v
v vf ∂= . 

With(18)-(20), (16) can be rewritten as 
( )ˆ ˆ( ) ( ) ( )T T T T

nn nn rs t Ks t W V x W V xσ σ δ ε= − + − + + .  (21) 

Define the weight estimation errors as 
ˆ ˆ,V V V W W W= − = −                                      (22) 

The Taylor series expansion of ( )T
nnV xσ for a given 

nnx  can be written as 

( ) ( ) ( ) ( )2ˆ ˆT T T T T
nn nn nn nn nnV x V x V x V x o V xσ σ σ ′= + +        (23) 

where ˆ( )T
nnV xσ ′ is the Jacobian of ( )ˆ

nnVxσ , and 

( )2T
nno V x  denoting terms of second-order residue. 



     

Using (22), (23) and the following procedure (Wang 
et. al., 2001), the error dynamics of closed-loop can 
be expressed as 

 ˆ ˆˆ ˆ ˆ( )( ) ( )
T T T T

nn nn

r

W V x W V xs t Ks t σ σ σ
δ ω ε

⎡ ⎤′ ′− +
= − + ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦

        (24) 

where ( )T
nnV xσ σ= , ( )ˆˆ T

nnV xσ σ= , ( )ˆˆ T
nnV xσ σ′ ′= , and 

( )tω  is the disturbance term which is given by 

( )ˆ ˆ ˆˆ ˆ ˆ ˆ( ) T T T T T T
nn nnt W W W V x W V xω σ σ σ σ σ′ ′= − − − − .        (25) 

It can also be written by 
( ) ˆ ˆˆ ˆ ˆ( ) T T T T T

nn nnt W W V x W V xω σ σ σ σ′ ′= − + − .      (26) 
The corresponding upper bound on the norm of 

( )tω will be 

1
ˆ ˆˆ ˆ( ) T T

nn nnF F
t V x W W V x Wω σ σ′ ′≤ + +         (27) 

            ˆ ˆ( ) ( , , )nnt W V xω ωω ρ φ≤                                      (28) 
where 

( )ˆ ˆˆ ˆ 1T T
nn nnF

x W V xωφ σ σ′ ′= + + , 

1max( , , )FV W Wωρ = . 

In order to driving the adaptive law, a tuning error, s∆ , 
is introduced as follows 

 ( )ss s sat∆ ∆= − ∆ ，                                              (29) 

( )
1

1

s s

s

sat s

s
∆ ∆

> ∆⎧
⎪

= ≤ ∆⎨
⎪

− < −∆⎩

                                         (30) 

where ∆ is an arbitrary positive constant. Hence we 
derive the following theorem: 
Theorem 2: Suppose that assumptions 1, 2, and 3 are 
held. Consider closed-loop system (1), the sliding 
mode control law and the corresponding adaptive law 
are given by  

1ˆ( ) ( , )v t f x δ−=                                                 (31) 
( ) ˆ ˆ( ) ( ) 0,n T T T

nn rdy Ks t W V x eδ σ δ⎡ ⎤= − − − Λ +⎣ ⎦
        (32) 

( ) ( )ˆ 1 0

0 0

s s
s

r
K sat s

s

ωϕ φ
δ

∆

∆
∆∆

∆

⎧− + + ∆ ≠⎪= ⎨
⎪ =⎩

      (33) 

( )ˆ ˆˆ ˆ T
nnW F V x sσ σ ∆′= −                                      (34) 

( )ˆ ˆ ˆT
nnV R x s W σ∆ ′=                                            (35) 

( )ˆ 1wsϕ γ φ∆= +                                                  (36) 
where max( , )Nωϕ ρ ε= , ϕ̂  is the estimate of ϕ , ˆϕ ϕ ϕ= − , 

0TF F= > , 0TR R= > , and 0γ > . If the initial error 

( )(0), (0), (0) re W V ∈Ω (ref. to the definition shown in (44)) 
the signals e , ˆ ˆ,W V  and ϕ̂  are all ultimately bounded. 
Proof: Consider the candidate of Lyapunov function 
as  

2 1 1 11 1 1 1( ) ( )
2 2 2 2

T T TL s tr W F W tr V R V ϕ γ ϕ− − −
∆= + + + .        (37) 

The derivative of L  with respect to time is given by 
1 1 1( ) ( )T T TL s s tr W F W tr V R V ϕ γ ϕ− − −

∆ ∆= + + +      (38) 
where 0s∆ =  for s ≤ ∆  and s s∆ =  for s > ∆ . 
According to the adaptive law (34)-(36), 0L =  for 

s ≤ ∆ . Therefore, the remaining of this proof deals 
strictly with the case of s > ∆ . Using (24), it yields 

( )
( ) ( )

1

1 1

ˆˆ ˆ

ˆ ˆ

T T
nn

T T T
nn r

L Ks s trW F W V x s

trV R V x s W s

σ σ

σ δ ω ε ϕ γ ϕ

−
∆ ∆

− −
∆ ∆

⎡ ⎤′= − + + −⎢ ⎥⎣ ⎦

′+ + + + + +

.   (39) 

Based on (34), (35) and the fact ˆ ˆ,W W V V= − = − , Equ. 
(39) can be rewritten as 

( ) 1T
rL Ks s s δ ω ε ϕ γ ϕ−

∆ ∆= − + + + +  .                      (40) 
In terms of (18), (28) and max( , )Nωϕ ρ ε= , we obtain 

( ) 11 T
rL Ks s s s ωδ ϕ φ ϕ γ ϕ−

∆ ∆ ∆≤ − + + + + .             (41) 
Using (36) and ( )ss s sat∆ ∆= + ∆ , (41) becomes 

( ) ( )2 ˆ 1s
rL Ks K s sat s sωϕ φ δ∆ ∆ ∆ ∆∆≤ − − ∆ + + + .          (42) 

Using(33), (42) can be expressed as 
2L Ks∆≤ − .                                                        (43) 

Since (18) holds on a compact set Ω , all the states 
needed to be remained in this compact set for all t>0 in 
order for (43) to be valid. Introducing compact set 

{ }( , , ) ( ) , 0l e W V L t l lΩ = ≤ < , constant *l  is determined 
by ( ){ }* sup ( , , ) , , ,l

l R
l l e W V x u v

+∈
= ∀ ∈ Ω ∈ Ω . Define the 

compact set 

{ }*( , , ) ( )r e W V L t r lΩ = ≤ ≤                                    (44) 

Then for any ( (0), (0), (0))e W V ∈ rΩ  it follows from (37) 
and (43) that L(t) is bounded from above by r , which 
implies that ( , , )x u v ∈ Ω  for all 0t ≥ .  
According to (43), one can obtain that , , ,s W V Lϕ∆ ∞∈ . 
Since ( )L t  is bounded from below and is non-
increasing with time, it has a limit, i.e., ( )lim ( )

t
L t L

→∞
= ∞ . 

Using (43) and the fact that 0s∆ =  for ( )s t ≤ ∆ , we 
have 

( ) ( )2

0

0
( )

L L
s t dt

K

∞
∆

− ∞
≤ < ∞∫                                 (45) 

which implies that 2s L∆ ∈ . It has been shown that 
every term in right hand side of (21) is bounded, 
hence s∆  is also bounded, i.e., s L∆ ∞∈ . From 

2s L∆ ∈ , s L∆ ∞∈  and s L∆ ∞∈ , we have lim ( ) 0
t

s t∆
→∞

= . This 

implies that ( )s t  converges to the region ( )s t ≤ ∆ . We 
can also establish that the tracking errors are bounded 
from above by 12 , 1, 2,i i n

ie i nλ− −≤ ∆ = (Tao and 
Kokotovic, 1995). According to the assumption 1-3, 
one can derive that all the signal in the closed-loop 
system is ultimately bounded. 

  
  

5. SIMULATION  
  
Consider a nonlinear systems described by 

3

2 2
1 2

1 2

2 1 2 1

1

[ ]( )

u
x x

x x

x x x

u H v t
y x

+ +

=⎧
⎪

= +⎪⎪
⎨
⎪ =
⎪

=⎪⎩

                                                 (46) 

the hysteresis [ ]H ⋅  is generated by summation of 
N=160 backlashes, which can be described as 

1
[ ]( )

N
i

i
H v t u

=
= ∑ ; 

2

2

( ) ( ) 0, ( ) ( )

( ) ( ) 0, ( ) ( )

0

i

i

d
i

d
i i

v t v t u t v t

u v t v t u t v t

⎧ > = −⎪
⎪

= < = +⎨
⎪
⎪
⎩

otherwise

.  

where id s are uniformly distributed in [0, 4], and all 
backlash are initialized to zero.  We also assume that 
f(x,u) is unkown for neural controller. The output ( )y t  



     

is required to track a desired trajectory 
5( ) 0.5 sin 3 sin 1
t

dy t e t t−= + + .A three-layer feedforward 
neural network, which is consisted of n1=9 input 
nerons, n2=20 hidden neurons with sigmoidal 
activation functions and n3=1 output neuron, is used to 
approximate f . The neural network weight matrices 
Ŵ and V̂ are set to zero as the initialization.   
The other parameters are chosen as  

2λ = ， 20 , 20F I R I= = ， 5γ = ， 2, 0.01K = ∆ = ，

ˆ ( , )f x v v= ， (0) [0.5,2.0]Tx = , ˆ(0) 2, 0.01dϕ = = , 

1 2
ˆ ˆ[1, , , , , ( ), ( ), [ ]( ), [ ]( )]Tnn d dx y y e e v t v t d H v t H v t d= − − , 

where I is a suitable identity matrix;. The transform 
operator ˆ[ ]h ⋅  used to extract the boundary is choosen 
as 

,
ˆ[ ]( ) [ ]( )

S
h v t v t d dα βγ α β= ∫∫ .                                 (47) 

where ( , ) 1µ α β = , so that ˆ[ ]⋅h  meets the requirement of 
assumption 2. In ( ,0]−∞ , we set 

min max(0) (0) 0v v= = ,which implies [̂ ](0) 0h v = . In order 
to compare the tracking performance of controller 
with and without compensation, a PID controller is 
designed for (46) in which influence of hysteresis 
nonlinearity is ignored. the control signal v(t) is 
designed as 

   
1 1 2

0
( ) ( ) ( )

t
I P dv K e t dt K e t K e t= − − −∫                        (48) 

with 8, 4, 2I P dK K K= = = . The tracking performances 
of the closed-loop system are shown in Fig. 1. Figs. 
(1a) and (1b) respectively illustrate the tracking 
performance in the case of using the proposed 
controller with the neural model and using PID 
controller without hysteresis compensation. x1 here is, 
in fact, the system output. The performance of x1 
reflects the behavior of the closed-loop system. Figs. 
(1c), on the other hand, showes the tracking errors in 
both cases of the control schemes with and without 
hysteresis compensation.  
The control signals of both control strategies both 
plotted in Fig. 2. Clearly, we can see that the 
proposed control approach with neural network 
based hysteresis compemsator can remove the 
oscillation caused by hysteresis and improve the 
tracking accuracy of the system. The proposed 
control method has derived much better performance 
than the control scheme without hysteresis 
comensation. The hysteresis responses of close-loop 
system with both different control schemes are 
shown in Fig. 3. 
  

6. CONCLUSIONS 
  
In order to apply neural network to modeling the 
multivalued hysteresis nonlinearity, a transform is 
firstly defined to construct the non-multivalued 
mapping between the output of hysteresis and an 
introduced coordinate. Then, an adaptive sliding 
mode controller for a nonlinear plant preceded by a 
unknown hysteresis is developed. In the control 
scheme, a neural network based estimator is used to 
forecast the effect of hysteresis. Therefore, the 
controller can cancel effect of hysteresis on the plant. 
The advantage of the proposed control approach is 

that it will be more useful to the practical process in 
engineering where the output of hysteresis is usually 
unmeasurable. 
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Fig.1a  The performance of state x1 with neural 
compensator 

  

 
 Fig.1b The performance of state x1 without 

compensation 
  

 
 Fig. 1c The tracking eror of plant state x1 
  

 
Fig.2. Control signal v(t) in both NN and PID 
controllers 

  

 
  

Fig.3 Hysteresis in closed-loop systems with and without 
compensation 

  
  

  


