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Abstract: This paper presents a sensor fault detection and identification scheme
for uncertain linear time-invariant neutral delay systems. Modeling uncertainty,
disturbance and noise are represented as unknown bounded inputs appearing in the
state and output equations. An adaptive observer scheme extending Vemuri and
Polycarpou (1997)’s work is utilized to detect and identify the fault. Robustness
to the unknown inputs is analysed rigorously. It is proved that the fault estimate
and the errors of state and output estimation are uniformly bounded. A numerical
example is included for illustration. Copyright c©2005 IFAC
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1. INTRODUCTION

Neutral time-delay systems are a particular class
of delay systems that the delay argument oc-
curs also in the derivative of the state vari-
able. Many engineering systems can be mod-
eled by these systems, such as steam or water
pipelines, heat exchangers and loss-less transmis-
sion lines (LC circuits) in electrical engineering
(Ivănescu et al., 2003). In recent years, stud-
ies on these systems have received more atten-
tion, for example stability analysis (Verriest and
Niculescu, 1998; Ivănescu et al., 2003), controller
(Mahmoud, 2000) and observer design (Wang et

al., 2002). Their particularity different from that
of the familiar retarded type systems (which have
delays only in the state) implies an increased com-
plexity for investigation.

On the other hand, fault diagnosis is becoming
an important issue in modern engineering sys-
tems due to the rising demands of product qual-
ity, effectiveness and safety. On the contrary to
the intensively investigated researches of robust

fault diagnosis for uncertain linear systems and
fault diagnosis for nonlinear systems (Frank et

al., 2001), the studies on fault diagnosis for delay
systems (retarded type or neutral type) are very
few. Yang and Saif (1998) first proposed a scheme
of actuator and sensor fault diagnosis for linear
state-retarded systems using an unknown input
observer combined with a technique of input esti-
mation. Jiang et al. (2002) developed an adaptive
observer scheme to estimate abrupt component
fault for linear (nonlinear) systems with delays
in the state. For systems with constant delays
in the input and output, Zhang et al. (2002)
presented a component fault detection method
based on parity equations. As for neutral type
delay systems, under the assumption that the
system was stable, Zhong et al. (2002) designed
a robust fault detection filter without delays in
the state guaranteeing both sensitivity to the fault
and insensitivity to the disturbance and control
input. In most cases, large delay can make the
closed-loop system unstable and deteriorate the
performance, and most methods of fault diagnosis



for linear systems modeled by ordinary differential
equations are not applicable to systems with de-
lays. So far, the fault diagnosis problem for linear
delay systems, especially neutral delay systems,
has not been fully investigated and remains to be
important and challenging.

This paper addresses the problem of sensor fault
detection and identification for a class of uncertain
linear time-invariant neutral delay systems. The
system investigated has two different constant de-
lays in the state and state’s derivative. Modeling
uncertainty, disturbance and measurement noise
are represented as unknown inputs with bounded
magnitudes appearing in the state and output
equations. An adaptive observer scheme extend-
ing the one of Vemuri and Polycarpou (1997) is
utilized to detect and identify the sensor fault, and
the fault estimate can be used in further fault di-
agnosis and fault tolerant control. It is proved that
the fault detection algorithm is robust against the
unknown inputs with a zero false-alarm ratio, and
the fault estimate and the errors of state and
output estimation are uniformly bounded under
the assumption of formal stability (Richard, 2003)
of the system.

Throughout this paper, C([a, b],Rn) is the Banach
space of continuous functions mapping the inter-
val [a, b] into R

n with the topology of uniform
convergence, | · | denotes the Euclidean vector
norm or induced matrix 2-norm, ‖·‖∞ denotes the
Lebesgue infinity norm for time functions defined
by ‖η(t)‖∞ , supt≥0 |η(t)|, or the H∞ norm for
transfer functions, and the Frobenius matrix norm
is denoted by |M |2F ,

∑

ij |mij |
2 = trace(MMT ).

The arguments of a function will be omitted in
the analysis when no confusion can arise.

2. PROBLEM FORMULATION

Consider an uncertain linear time-invariant neu-
tral time-delay system described as
{

ẋ−Eẋ(t− τ) = Ax+Adx(t− d) +Bu+ ηx
y = Cx+Du+ B(t− T )f + ηy

(1)
where x(t) ∈ R

n, u(t) ∈ R
l and y(t) ∈ R

m are
respectively the state, input and output of the
system. 0 < τ, d <∞ are two constant delays. A,
Ad, B, E, C, D are known constant matrices with
compatible dimensions. The initial condition is
x(θ) = φ(θ) for θ ∈ [−τ , 0], where τ , max{τ, d}
and φ(θ) ∈ C([−τ , 0],Rn).

B(t−T )f denotes the sensor fault, where f ∈ R
m

is an unknown constant vector representing the
fault in the stable mode. B(t−T ) is a time profile
function defined by

B(t− T ) , diag{β1, · · · , βm} (2)

βi =

{

0 if t < T

1− e−αi(t−T ) otherwise
(i = 1, · · · ,m)

where T is the unknown time of fault occurrence,
and αi > 0 (i = 1, · · · ,m) are unknown scalars.
This form of fault representation can describe
either slowly developing (incipient) fault with a
small αi or abrupt fault with a large αi.

ηx(t) and ηy(t) are the unknown inputs represent-
ing modeling uncertainty, disturbance and mea-
surement noise.

For system (1), the following assumptions are
made.

A1: The values of the delays τ and d are known.
A2: The unknown fault is bounded, i.e. |f | ≤ c,

where c is known.
A3: The magnitudes of the unknown inputs are

bounded, i.e. ‖ηx(t)‖∞ = ηx and ‖ηy(t)‖∞ =
ηy, with the bounds ηx and ηy available.

A4: The system (1) is formally stable (Richard,
2003), i.e. the difference equation x(t) = Ex(t−
τ) is stable for all 0 < τ <∞.

Assumption 4 ensures that the number of unstable
eigenvalues of system (1) is finite, and this condi-
tion is necessary for the observer design proposed
in this paper.

Now, the objective of this paper is to detect and
estimate the sensor fault for the uncertain linear
neutral system defined by equation (1).

3. ROBUST FAULT DETECTION AND
IDENTIFICATION SCHEME

To address the proposed problem, a robust adap-
tive observer is constructed in this section, which
is defined by


































˙̂x− E ˙̂x(t− τ) = Ax̂+Adx̂(t− d)
+Bu+K[y − ŷ]

−Ω
˙̂
f + EΩ(t− τ)

˙̂
f(t− τ)

−EΩ̇(t− τ)[f̂ − f̂(t− τ)]

−AdΩ(t− d)[f̂ − f̂(t− d)]

ŷ = Cx̂+Du+ f̂
(3)

Ω̇−EΩ̇(t−τ) = (A−KC)Ω+AdΩ(t−d)+K (4)

where x̂(t) ∈ R
n, ŷ(t) ∈ R

m and f̂(t) ∈ R
m

are the estimates of the state, output and fault,
respectively. The initial conditions are x̂(θ) =
x(θ), Ω(θ) = 0 for θ ∈ [−τ , 0]. K ∈ R

n×m

is the gain matrix of the observer, and Ω(t) ∈
R
n×m is the filtered version of K. The auxiliary

filter (4) is used to guarantee the stability of the
fault estimation scheme (Vemuri and Polycarpou,
1997). Here, the assumption x̂(θ) = x(θ) is only
for simplicity, since the influence of the initial
error will decrease to zero asymptotically.



The selection of K should ensure that the follow-
ing system

ζ̇ − Eζ̇(t− τ) = (A−KC)ζ +Adζ(t− d)

+Kω (5)

ξ =Cζ (6)

is asymptotically stable and there exists a γ > 0
such that the transfer function Gωξ(s) from the
noise ω(t) to the output ξ(t) satisfies ‖Gωξ(s)‖∞ <
γ. For the system (5)-(6), ζ(t) ∈ R

n, ξ(t) ∈ R
m,

ω(t) ∈ R
m, and the initial condition is ζ(θ) = ϕ(θ)

for θ ∈ [−τ , 0], where ϕ(θ) ∈ C([−τ , 0],Rn). The
additional noise attenuation requirement herein is
to guarantee the performance of fault estimation.

Using the Lyapunov synthesis method in adaptive
control (Ioannou and Sun, 1996), we derive the fol-
lowing adaptive law to update the fault estimate

˙̂
f = P

[

−Γ(CΩ− I)TD(ey)
]

, (7)

where ey(t) , y(t) − ŷ(t), Γ = ΓT > 0 is the
learning rate matrix. The initial fault estimate
satisfies f̂(θ) = 0 for θ ∈ [−τ , 0]. P is the
projection operator, which is used to prevent the
phenomenon of parameter drift in the presence of
bounded disturbances (Ioannou and Sun, 1996).
The adaptive law (7) with the projection operator
can be further expressed as (Ioannou and Sun,
1996)

˙̂
f = −

[

I − I
Γf̂ f̂T

f̂TΓf̂

]

Γ(CΩ− I)TD(ey),

where the indicator function I(t) is defined by

I =







0 if |f̂ | < c or

[|f̂ | = c and f̂TΓ(CΩ− I)TD(ey) ≥ 0]

1 if |f̂ | = c and f̂TΓ(CΩ− I)TD(ey) < 0

It was proved that this projection operator guar-
antees |f̂(t)| ≤ c ∀t ≥ 0 if |f̂(0)| ≤ c and |f | ≤ c
(Ioannou and Sun, 1996). D(·) is the dead-zone
operator with definition (Ioannou and Sun, 1996)

D(ey) =

{

0 if |ey| < ε
ey otherwise

(8)

The threshold of this dead zone can be selected as
ε , (µ/ρ)|C|ηx+[(µ/ρ)|C||K|+1]ηy, where µ, ρ >
0 should satisfy |X(t)| ≤ µ e−ρt (t ≥ 0). X(t) is the
basic matrix solution of the neutral type func-
tional differential equation (5) for ω(t) = 0. As
stated before, the system (5) can be made asymp-
totically stable through selecting an appropriate
K, and Hale and Lunel (1993, theorem 3.2, pp.
271) proved that these constants µ, ρ > 0 always
existed. The operator D(·) is used to guarantee
robustness with respect to the unknown inputs.
It keeps the fault estimate invariant when the
output estimation error is smaller than ε. After
the detection of a fault it becomes unnecessary
and can be disabled.

In the adaptive law (7), the fault estimate is
set to zero in the initial and will be kept zero
when no fault occurs. Whenever |ey(tf )| ≥ ε at

tf > 0, fault estimation is activated and f̂(tf ) 6= 0.
So fault can be detected either by distinguish-
ing whether the fault estimate is nonzero or by
distinguishing whether |ey(t)| is larger than ε,
and tf is the instant when the fault is detected.
Thus, |ey(t)| can be used as the residual for fault
detection, while ε is the threshold.

The following lemma gives a sufficient condition
for the asymptotic stability with H∞ noise atten-
uation of the system (5)-(6) and also a parame-
terization of K.

Lemma 1. If there exist symmetric matrices P >
0, S > 0, Q ∈ R

n×n, matrix Y ∈ R
n×m and a

scalar γ > 0 such that the following linear matrix
inequality (LMI) holds

Π ,









Π11 Π12 PAd Y
∗ Π22 0 0
∗ ∗ −Q 0
∗ ∗ ∗ −γ2I









< 0

where

Π11 = PA+ATP − Y C − CTY T + S +Q+ CTC

Π12 = (PA− Y C + S +Q+ CTC)E

Π22 = ET (S +Q+ CTC)E − S

then the system (5)-(6) is asymptotically stable
for any 0 < τ, d < ∞ and ‖Gωξ(s)‖∞ < γ. The
corresponding observer gain is K = P−1Y .

Proof. In order to prove the system (5)-(6) is
asymptotically stable for any τ, d > 0 with
γ > 0 being the level of noise attenuation, we
only need to prove the accompanied Hamiltonian
H[ζ(t), ω(t), t] satisfies the following relation un-
der the condition of lemma 1

H(ζ, ω, t) , |Cζ|2 − γ2|ω|2 + V̇ζ < 0.

The Lyapunov-Krasovskii functional Vζ(t) can be
selected as

Vζ = [ζ − Eζ(t− τ)]TP [ζ − Eζ(t− τ)]

+

∫ t

t−τ

ζTSζ dθ +

∫ t

t−d

ζTQζ dθ

Differentiate Vζ(t) with respect to t along the

trajectory of (5), and letM(ζ) , ζ(t)−Eζ(t−τ),
after some matrix manipulation and completing
squares, it follows that

H(ζ, ω, t) ≤MT [P (A−KC) + (A−KC)TP

+S +Q+ CTC + γ−2PKKTP ]M

+2MT [P (A−KC) + S +Q+ CTC]Eζ(t− τ)

+ζ(t− τ)T [ET (S +Q+ CTC)E − S]ζ(t− τ)

+2MTPAdζ(t− d)− ζ(t− d)TQζ(t− d)

Let Y = PK, if Π < 0 then using Schur com-
plement there exists H[ζ(t), ω(t), t] < 0. On the



other hand, from Π22 < 0 (guaranteed by Π < 0)
it is derived that ETSE − S < 0, so the system
(5) is formally stable. Furthermore, P (A−KC)+
(A −KC)TP < 0 can be derived from Π < 0, so
A−KC is Hurwitz. From the conclusions above,
lemma 1 is proved. ¤

Based on lemma 1, we can select an appropriate
gain K to guarantee the asymptotical stability of
the system (5)-(6) by solving a feasibility problem
of LMI. Suppose the resulting system (5)-(6) has
a guaranteed γ0 > 0 level of noise attenuation
performance.

4. ROBUSTNESS TO UNKNOWN INPUTS

In the fault detection and identification algorithm
designed above, robustness to unknown inputs is
achieved by using the dead-zone operator D(·).
The following theorem indicates that, before fault
occurrence, i.e. when the system is only driven by
the unknown inputs, the residual |ey(t)| is always
less than the threshold ε, and fault estimate re-
mains at zero. So no false alarms will be generated.

Theorem 2. The robust fault detection and iden-
tification scheme (3), (4) and (7) guarantees that

f̂(t) = 0 for t ∈ [0, T ] before the occurrence of a
sensor fault.

Proof. The proof can be derived similarly to
(Trunov and Polycarpou, 2000). Suppose there is
a time instant tε (where 0 < tε < T ) such that
|ey(t)| < ε for t ∈ [0, tε) and |ey(tε)| = ε. Using the

adaptive law (7), we can conclude that f̂(t) = 0
in the interval t ∈ [0, tε). So the dynamics of the
state and output estimation errors in the interval
t ∈ [0, tε) satisfies

ėx − Eėx(t− τ) = (A−KC)ex +Adex(t− d)

+ηx −Kηy (9)

ey =Cex + ηy

where ex(t) , x(t)−x̂(t), and the initial condition
is ex(θ) = x(θ)− x̂(θ) = 0 for θ ∈ [−τ , 0]. Suppose
X(t) is the fundamental matrix solution of the
neutral type functional differential equation (9)
for ηx(t) = 0, ηy(t) = 0. Using the formula (1.16)
given by Hale and Lunel (1993, pp. 260), the

solution of equation (9) is ex =
∫ t

0
X(t−τ)[ηx(τ)−

Kηy(τ)] dτ . Because of |X(t − τ)| ≤ µ e−ρ(t−τ)

(t ≥ τ), we can derive that

|ex(t)| ≤

∫ t

0

|X(t− τ)|dτ(ηx + |K|ηy)

≤

∫ t

0

µ e−ρ(t−τ) dτ(ηx + |K|ηy)

=
µ

ρ
(ηx + |K|ηy)(1− e−ρt).

So when t ∈ [0, tε),

|ey(t)| = |Cex + ηy| ≤ |C||ex|+ ηy
≤

µ

ρ
|C|(ηx + |K|ηy)(1− e−ρt) + ηy.

Then using the continuity of ey(t), we can obtain

|ey(tε)| <
µ

ρ
|C|(ηx + |K|ηy) + ηy

=
µ

ρ
|C|ηx + (

µ

ρ
|C||K|+ 1)ηy = ε

which contradicts the assumption. So we conclude
that |ey(t)| < ε for t ∈ [0, T ] and the fault estimate
is zero in this interval with the adaptive law (7).¤

On the premise of no false alarms, selecting an
appropriate threshold, which can be obtained by
choosing µ and ρ properly, can also reduce the
missing alarm ratio of the scheme.

5. PERFORMANCE OF FAULT ESTIMATION

Now the main theorem of this paper is presented
which demonstrates that the fault estimate, the
state and the output estimation errors in the
dynamics of robust estimation scheme are all
uniformly bounded.

Theorem 3. In the presence of a sensor fault the
robust fault detection and identification scheme
(3), (4) and (7) guarantees that ex(t), ey(t) and

f̂(t) are uniformly bounded, and for any finite
time tf > 0 there exist two constants κ1, κ2 > 0
and a bounded function ζ(t) depending on the
unknown inputs such that the output estimation
error satisfies
∫ T+tf

T

|ey(t)|
2 dt ≤ κ1+κ2

∫ T+tf

T

|ζ(t)|2 dt (10)

Proof. Let ex(t) , ex(t) + Ω(t)f̃(t) (Vemuri and

Polycarpou, 1997) where f̃(t) , f − f̂(t), from
the equations of the system (1) and the adaptive
observer (3) and (4), we can obtain

ėx − Eėx(t− τ) = (A−KC)ex +Adex(t− d)
+(ηx −Kηy) +KΦf

ex = ex − Ωf̃ (11)

ey =Cex − CΩf̃ + f̃ + ηy − Φf (12)

where Φ(t) , I − B(t − T ). From (2), it can be
derived that

Φ̇ = −ΛΦ t ≥ T (13)

where Φ(T + θ) = I for θ ∈ [−τ , 0] and Λ =
diag{α1, · · · , αm}. Let ex(t) = ζ1(t) + ζ2(t), and
decompose the dynamics of ex(t) when t ≥ T into
two parts (Vemuri and Polycarpou, 1997)



ζ̇1 − Eζ̇1(t− τ) = (A−KC)ζ1 +Adζ1(t− d)

+(ηx −Kηy) (14)

ζ̇2 − Eζ̇2(t− τ) = (A−KC)ζ2 +Adζ2(t− d)

+KΦf, (15)

where ζ1(T + θ) = 0 and ζ2(T + θ) = ex(T + θ)
for θ ∈ [−τ , 0]. If |ey(t)| < ε for t ≥ T then

f̂(t) = 0, and the theorem holds trivially. To prove
stability after the fault is detected we can choose
a Lyapunov-Krasovskii functional candidate

V (t) = V1(t) + V2(t) + V3(t) (16)

where

V1 = f̃TΓ−1f̃
V2 = (2 + γ2

0)c
2trace(ΦΛ−1Φ)

V3 = 2
{

[ζ2 − Eζ2(t− τ)]TP [ζ2 − Eζ2(t− τ)]

+

∫ t

t−τ

ζT2 Sζ2 dθ +

∫ t

t−d

ζT2 Qζ2 dθ
}

The time derivative of V1(t) along the solution of
(7) is given by

V̇1 = 2f̃T (CΩ− I)T ey

−2f̃TI
f̂ f̂T

f̂TΓf̂
Γ(CΩ− I)T ey

Considering that (Ioannou and Sun, 1996)

f̃TI
f̂ f̂T

f̂TΓf̂
Γ(CΩ− I)T ey ≥ 0,

we can derive that V̇1(t) ≤ 2f̃T (t)[CΩ(t) −
I]T ey(t). Thus, from (12) and (13) the time
derivative of V (t) can be derived as

V̇ ≤ −2|ey|
2 − 2(2 + γ2

0)c
2|Φ|2F + V̇3

+2eTy (Cζ1 + ηy + Cζ2 − Φf)

Considering the fact that |Φ(t)| ≤ |Φ(t)|F, after
completing squares we obtain

V̇ ≤− 1
4 |ey|

2 + |Cζ1 + ηy|
2

−[|ey|
2 − 2eTy (Cζ1 + ηy) + |Cζ1 + ηy|

2]

−[ 12 |ey|
2 − 2eTy Cζ2 + 2|Cζ2|

2]

−[ 14 |ey|
2 − 2c|ey||Φ|+ 4c2|Φ|2]

+2|Cζ2|
2 − 2γ2

0c
2|Φ|2 + V̇3

≤− 1
4 |ey|

2 + |Cζ1 + ηy|
2

+2|Cζ2|
2 − 2γ2

0c
2|Φ|2 + V̇3

≤− 1
4 |ey|

2 + |Cζ1 + ηy|
2

+2[|Cζ2|
2 − γ2

0 |Φf |
2 + 1

2 V̇3]

Now let ω(t) = Φ(t)f , from the selection of K
and the proof of lemma 1 there exists |Cζ2(t)|

2 −
γ2
0 |Φ(t)f |

2 + (1/2)V̇3(t) < 0, so

V̇ ≤ − 1
4 |ey|

2 + |Cζ1 + ηy|
2. (17)

Therefore V̇ (t) ≤ 0 whenever |ey(t)| > 2|Cζ1(t) +
ηy(t)|.

As stated in section 3, the projection operator
P(·) guarantees |f̂(t)| ≤ c, so f̃(t), f̂(t) ∈ L∞.
It is obvious that Φ(t) ∈ L∞ from (13), therefore
from assumption 2 and 3, observing (14) and (15),
ζ1(t), ζ2(t) ∈ L∞ can be derived. Observing (4)
Ω(t) ∈ L∞ can also be obtained. Thus from
(11) and (12), conclusions can be drawn that
ex(t), ey(t) ∈ L∞, and the first part of this
theorem holds true.

When inequality (17) is integrated over the inter-
val [T, T + tf ], it is derived that
∫ T+tf

T

|ey(t)|
2 dt ≤ 4[V (T )− V (T + tf )]

+ 4

∫ T+tf

T

|Cζ1(t) + ηy(t)|
2 dt

So the second part of this theorem is proved with
κ1 = 4 suptf≥0[V (T )− V (T + tf )] and κ2 = 4. ¤

The inequality (10) implies that the performance
of fault estimation is limited by the extended L2

norm of ζ(t), which corresponds to the filtered
value of the unknown inputs ηx(t) and ηy(t).

6. SIMULATIONS

Consider the uncertain linear time-invariant neu-
tral delay system given by (1) with

A =

[

2.5 −0.5
0 −3

]

, Ad =

[

0.1 −0.05
0.03 0.1

]

, B =

[

1
1

]

E = diag{0.1, 0.1}, C = [ 1 0 ], D = 0, τ = 0.3s
and d = 0.5s. The initial condition is x(θ) =
[−2 −2 ]T for θ ∈ [−0.5, 0]. Since this system is
unstable, a simple proportion integral controller
(with the proportional and integral parameters
set to 10 and 4, respectively) is used to keep
the output of the system being at 10. Using the
LMI Toolbox in Matlab, K = [ 8.6221 −0.0743 ]T

can be selected that guarantees the system (5)-(6)
stable with γ0 = 36.5381. The unknown inputs in
the state and the output equations are described
respectively as

ηx =

[

sin(0.25t)
sin(0.25t+ 0.5π)

]

, ηy = sin(0.25t+ π/3)

which satisfy ‖ηx(t)‖∞ = ‖ηy(t)‖∞ = 1 clearly.
In the simulation investigated here the threshold
ε of the dead-zone is selected as 0.4, and the fault
magnitude is supposed to be not larger than 100.

An incipient sensor fault will be investigated
which is defined by

B(t− T )f =

{

0 if t < 40s

15[1− e−0.05(t−40)] if t ≥ 40s

The learning rate matrix is chosen as Γ = 10.
Figure 1 shows that the fault estimate remains at
zero before 40s, and starts deviating from zero at
40.039s when the output estimation error is first
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Fig. 1. Simulation results

larger than the threshold, which means that the
fault is detected at 0.039s after it occurs. After
that the fault estimation unit begins to work, and
the fault estimate tracks the real value in a desired
manner.

Therefore, conclusions can be drawn that the
robust fault detection and identification scheme
designed in this paper prevents false alarms in the
presence of unknown inputs and provides a good
approximation of the fault that can be used in
further diagnosis and fault-tolerant control.

7. CONCLUSIONS

Based on an adaptive observer, a robust fault
detection and identification scheme is proposed for
a class of uncertain linear time-invariant neutral
delay systems with unknown inputs in the state
and output equations. Sensor fault, either incipi-
ent or abrupt, is considered. Theoretical analysis
and simulation results demonstrate that the fault
detection and identification scheme is robust to
the bounded unknown inputs without any false
alarm and is capable of estimating the fault with
desired accuracy.
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