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1. INTRODUCTION

A major application area of automatic control
techniques is aircraft guidance and control. In
the last few years modelling and control of he-
licopters has received a lot of attention. Avila
and Brogliato proposed a detailed model for a
helicopter in (Avila-Vilchis and Brogliato, 2000).
Marconi et al. proposed a control algorithm for he-
licopter landing on oscillating platforms (Marconi
et al., 2002). In particular the problem of ver-
tical landing and taking off of special airplanes
represents an important challenge for the control
community. This is known as the PVTOL problem
where PVTOL stands for Planar Vertical Take-off
and Landing. The PVTOL can represent either
the longitudinal model of a helicopter or a simpli-
fied model of a bi-rotor plane capable of vertical
take-off and landing. Such a system represents a
nonlinear dynamical problem and some nonlinear
controllers have been proposed in the last decade
by (Sepulchre et al., 1997), (Fliess et al., 1995),
(Olfati-Saber, 2000) and (Tanaka et al., 2004).
An algorithm to control the PVTOL based on
a approximate I-O linearization procedure was
proposed in (Hauser et al., 1992). Their algo-
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rithm achieves bounded tracking and asymptotic
stability. A non-linear small gain theorem was
proposed in (Teel, 1996) which can be used to
obtain a control law to stabilize a PVTOL. He
has proved the stability of a controller based on
nested saturations. An extension of the algorithm
proposed by (Hauser et al., 1992) was presented in
(Martin et al., 1996). They were able to find a flat
output of the system which was used for tracking
control of the PVTOL in presence of unmodelled
dynamics. In (Lin et al., 1999) an optimal con-
trol was used for robust control of PVTOL and
simulations have shown the robustness of the pro-
posed algorithm. In this paper we present a simple
control algorithm for the PVTOL whose conver-
gence analysis is relatively simple as compared
to other controllers proposed in the literature.
We present a new approach based on Lyapunov
analysis to control the PVTOL which can lead to
further developments in nonlinear systems. The
controller we propose is robust in the sense that it
remains stable in spite of small coupling between
the rolling moment and the lateral acceleration
of the aircraft. It is proved that state of the PV-
TOL converges to a neighborhood of the origin.
The size of such a neighborhood is determined by
the size of the unmodeled dynamics. The control



algorithm has been successfully tested in a real-
time platform application which uses a four-rotors
mini-rotorcraft.

2. MODELING

The PVTOL aircraft, as shown in Figure 1, has a
minimum number of states and inputs but retains
many of the features that must be considered
when designing control laws for a real aircraft.
Here θ is the roll angle that the aircraft makes
with the horizon. The control inputs u1 and u2

are respectively the thrust (directed out the bot-
tom of the aircraft) and the angular acceleration
(rolling moment). The ε0 parameter is a small co-
efficient which characterizes the coupling between
the rolling moment and the lateral acceleration
of the aircraft. We have the following dynamic

Fig. 1. The PVTOL aircraft

model:

m
..
x =−u1 sin θ + ε0u2 cos θ (1)

m
..
y =−u1 cos θ + ε0u2 sin θ −mg

J
..

θ = u2

where mg represents the gravitational force ex-
erted on the aircraft center of mass and J is the
inertial moment mass about the axis through the
center of mass of the aircraft and along the fuse-
lage. Dividing (1) by mg and using x = x/g, y =
y/g, u1 = u1/mg, u2 = u2/J and ε = ε0J/mg,
the dynamics becomes

..
x =− sin θu1 + ε cos θu2 (2)
..
y = cos θu1 + ε sin θu2 − 1
..

θ = u2

3. CONTROL LAW SYNTHESIS

The PVTOL usually operate in a region such that
the angle θ is bounded by

|θ| ≤ π

10
(3)

We first stabilize the PVTOL altitude y(t) using
the following linearizing control strategy

u1 =
r + 1
cos θ

(4)

and
r = −a1

.
y − a2(y − yd) (5)

where yd is the desired altitude and ai > 0, for
i = 1, 2 such that the polynomial s2 + a1s + a2 is
stable. We obtain from (2) and (4)

..
x =−(r + 1) tan θ + εu2 cos θ (6)
..
y =−a1

.
y − a2(y − yd) + εu2 sin θ

..

θ = u2

Now, we are assuming that input u2 is bounded
by a positive constant as

|u2| ≤ a (7)

We have BIBO (Bounded Input Bounded Output)
stability for sub-system y(t). Considering yd = 0
and defining

z , .
y +c2y (8)

we have
.
z + c1z = εu2 sin θ (9)

where

c1 + c2 = a1 (10)

c1c2 = a2

For z(t), we have z(t) = z(0)e−c1t+
∫ t

0
e−c1(t−τ)εu2 sin θdτ,

and for a time arbitrarily large

|z(t)| ≤ |ε| a
c1

θ (11)

from |sin θ| ≤ |θ| ≤ θ ≤ π
10 , where θ will be

defined later. For
.
y, we have y(t) = y(0)e−c2t +∫ t

0
e−c2(t−τ)z(t)dτ, and for a time arbitrarily large

|y(t)| ≤ |ε| a
c1c2

θ (12)

Then, for a time arbitrarily large (from (8))
∣∣ .
y(t)

∣∣ ≤ 2
|ε| a
c1

θ (13)

and for r(t) from (5) and considering a time
arbitrarily large (from (10)), we have

|r| ≤ a1 max
∣∣ .
y
∣∣ + a2 max |y| (14)

= cθ |ε| a
where

cθ = 2
a1

c1
θ + θ (15)

Then, y(t) and r(t) will be bounded by a small
bound by choosing a, a1, a2 and θ in suitable form
value. We propose to use u2 for controlling

.

(θ, θ,
.
x, x). The control algorithm is obtained step by
step in the following subsections.



3.1 Boundedness of
.

θ

In order to establish a bound for
.

θ, we define u2

as
u2 , −σa(

.

θ + σb(z1)) (16)
where

ση(s) =





η if s > η
s if -η ≤ s ≤ η
−η if s < −η

(17)

and z1 will be defined later. Let us propose

V1 =
1
2

.

θ
2

(18)

differentiating, we have
.

V 1 = −
.

θσa(
.

θ + σb(z1)) (19)

Note that if
∣∣∣
.

θ
∣∣∣ > b + δ for some b > 0 and δ > 0

arbitrarily small, then
.

V 1 < 0. After some finite
time T1, we will have∣∣∣

.

θ
∣∣∣ ≤ b + δ (20)

Let us assume that b verifies

a ≥ 2b + δ (21)

Then, from (2) and (16) we obtain for t ≥ T1

..

θ = −
.

θ − σb(z1) (22)

3.2 Boundedness of θ

First we establish a bound for θ, which will be
essential in avoiding fast displacement on x and
y. Defining z1 as

z1 , z2 + σc(z3) (23)

for some z3 to be defined later and z2 as

z2 = θ +
.

θ (24)

From (22) and (24), we have
.
z2 = −σb(z2 + σc(z3)) (25)

Let us define
V2 =

1
2
z2
2 (26)

then, the derivative is
.

V 2 = −z2σb(z2 + σc(z3)) (27)

Note that, if |z2| > c+ δ for some small positive δ

and c > 0, then
.

V 2 < 0. Therefore, it follows that
after some finite time T2 ≥ T1

|z2| ≤ c + δ (28)

From (24) we obtain for t ≥ T2

θ = θ(T 2)e
−(t−T2)+

∫ t

T2

e−(t−τ)z2(τ)dτ (29)

There exists a finite time T3 such that for t ≥
T3 > T2

|θ| ≤ θ , c + 2δ (30)

if
c + 2δ ≤ π

10
(31)

Assume that b and c satisfy

b ≥ 2c + δ (32)

Then, in view of (28), (25) reduces to
.
z2 = −z2 − σc(z3) (33)

3.3 Boundedness of
.
x

Define z3 and z4 as

z3 , z4 + σd(z5) (34)

z4 , z2 + θ − .
x (35)

then, from (6), (24) and (33) we have

.
z4 =−σc(z4 + σd(z5))− θ + (36)

(r + 1) tan θ − ε cos θu2

Considering the following positive definite func-
tion

V3 =
1
2
z2
4 (37)

differentiating V3 and using (36), we have

.

V 3 =−z4(−σc(z4 + σd(z5)) (38)

−θ + (r + 1) tan θ − ε cos θu2)

We will use the following inequalities which can
be easily verified graphically for |θ| ≤ π

10

|tan θ − θ| ≤ 2
15

θ2 (39)

|r tan θ| ≤ cθ |ε| a
(
|θ|+ 2

15
θ2

)

|ε cos θu2| ≤ |ε| a
(

1− 2
15

θ2

)
(40)

then, the expression −θ + (r + 1) tan θ− ε cos θu2

becomes bounded as follows

|−θ + (r + 1) tan θ − ε cos θu2| (41)

≤ |tan θ − θ|+ |r tan θ|+ |ε cos(θ)u2|
≤ 2

15
(
1 + cθ |ε| a− |ε| a

)
θ2

+cθ |ε| a |θ|+ |ε| a

=

(
√

cθ|ε|a |θ|+
1

2√
cθ|ε|a

cθ |ε| a
)2

+ |ε| a

−1
4

a2 |ε|2 c2
θ

cθ|ε|a
= M(θ, θ, |ε| , a)

where

cθ|ε|a , 2
15

(
1 + cθ |ε| a− |ε| a

)
(42)

and



M(θ, θ, |ε| , a) (43)

,
(

√
cθ|ε|a |θ|+

1
2√

cθ|ε|a
cθ |ε| a

)2

+ |ε| a−1
4

a2 |ε|2 c2
θ

cθ|ε|a

If the signal z4 is bounded by (see (38))

|z4| > d + M(θ, θ, |ε| , a) + δ (44)

and
c ≥ M(θ, θ, |ε| , a) + δ (45)

then, for some δ arbitrarily small and d > 0;
.

V 3 < 0. Therefore, after t > T3

|z4| ≤ d + M(θ, θ, |ε| , a) + δ (46)

choosing

c ≥ 2d + M(θ, θ, |ε| , a) + δ (47)

Then, after time T6 we are in the linear region of
the saturation function and therefore (36) reduces
to

.
z4 =−z4 − σd(z5) (48)

−θ + (r + 1) tan θ − ε cos θu2

3.4 Boundedness of x

We define
z5 , z4 + θ − 2

.
x− x (49)

then (from (6))

.
z5 =

.
z4 +

.

θ − 2
..
x− .

x

=−z4 − σd(z5)− θ + (r + 1) tan θ

−ε cos θu2 + z2 − θ

−2 (− tan θ(r + 1) + ε cos θu2)− .
x

= 3(r + 1) tan θ − 3ε cos θu2

−3θ − σd(z5)

where we have to use the fact that z2 =
.

θ+θ and
z4 = z2 + θ − .

x Now, let us define

V4 =
1
2
z2
5 (50)

then

.

V 4 = z5(3(r + 1) tan θ (51)

−3θ − 3ε cos θu2 − σd(z5))

There exists a finite time T7 > T6, such that if

|z5| > 3M(θ, θ, |ε| , a) + δ (52)

and
d ≥ 3M(θ, θ, |ε| , a) + δ (53)

then,
.

V 4 < 0. Therefore, after finite time T8 > T7

we have (see (43))

|z5| ≤ 3M(θ, θ, |ε| , a) + δ (54)

and
.
z5 = 3(r + 1) tan θ − 3ε cos θu2 − 3θ − z5 (55)

Boundedness of x follows from (54), (46) and (49).
The constraints on the parameters are

a≥ 2b + δ (56)

b≥ 2c + δ

c≥ 2d + M(θ, θ, |ε| , a) + δ

d≥ 3M(θ, θ, |ε| , a) + δ

θ = c + 2δ

3.5 Convergence of θ,
.

θ, x and
.
x

Choosing small constants c and δ for satisfying
(56) et from (54), it follows that for a time large
enough

|z5| ≤ 3M(θ, |ε| , a) + δ (57)

From (48), we have

|z4| ≤ 4M(θ, |ε| , a) + 2δ (58)

and from (34)

|z3| ≤ 7M(θ, |ε| , a) + 3δ (59)

and (from (33))

|z2| ≤ 7M(θ, |ε| , a) + 4δ (60)

from (24), finally we have

|θ| ≤ 7M(θ, |ε| , a) + 5δ (61)

or equivalently

|θ| ≤ 7
(
cθ|ε|aθ2 + cθ |ε| a |θ|+ |ε| a)

+ 5δ (62)

which hold it

|θ| ≤ 1
14cθ|ε|a

(1− 7cθ |ε| a (63)

−
√(

1− 7cθ |ε| a
)2 − 196 |ε| acθ|ε|a)

Choosing a such that

|ε| a ≤ 28 + 15cθ − 2
√

2
√

83 + 120cθ

7(8− 8cθ + 15c2
θ
)

(64)

then exist a real solution for θ. Therefore, stabi-
lization of θ in a neighborhood of the origin as in
(63) is obtained in spite of the coupling between
the rolling moment and the lateral acceleration of
the PVTOL as long as ε is smaller that the upper
bound (64). From (57)-(61) we have that zi(t) (for
i = 1, 2, ..., 5) converge to a small neighborhood
of the origin. From (24), (35), and (49), it follows
that

.

θ, x and
.
x converge a small neighborhood of



Fig. 2. The Quad-rotor mini rotorcraft and the
configuration of the Quad-rotor (a)Pitch,
(b)Roll and (c)Yaw control inputs

the origin. Finally, the control input u2 is given
by (16), (23), (24), (34), (35) and (49), i.e.

u2 =−σa(
.

θ + σb(θ +
.

θ (65)

+σc(2θ +
.

θ − .
x

+σd(3θ +
.

θ − 3
.
x− x))))

4. REAL-TIME EXPERIMENTS

In this section we present the results obtained
when applying the control strategy proposed in
the previous section. We are using a minirotor-
craft Draganfly III (see Figure 2). In this type
of helicopter the front and the rear motors ro-
tate counter clockwise while the other two mo-
tors rotate clockwise. Then the pitch movement
is obtained by increasing the speed of the rear
motor while reducing the speed of the front motor.
The roll movement is obtained similarly using the
lateral motors. The yaw movement is obtained by
increasing the speed of the front and rear motor
while decreasing the speed of the lateral motors.
Note that when the yaw and roll angles are set
to zero, the quad-rotor minirotorcraft reduces to
the PVTOL system (see Figure 2). We are us-
ing a Futaba Skysport 4 radio for transmitting
the control signals; these signals are refereed as
throttle control input u1 and pitch control input
u2. The radio joystick potentiometers are con-
nect through of data acquisitions cards (Advan-
tech PCL-818HG and PCL-726) to the PC and
for real-time applications we are using MATLAB
Simulink xPCtarget .The rotorcraft evolves freely
in a 3D space without any flying stand. In order
to measure the position (x, y, z) and the orien-
tation (ψ, θ, φ) of the rotorcraft, we use the 3D
tracker system (POLHEMUS) and we have built
a Simulink S-function for connecting the POL-
HEMUS via RS232 to the xPCtarget. The con-
troller parameters are selected using the following
procedure. We first selected the gain concerning
pitch angular velocity

.

θ, this value is small due
the on-board gyros, We next select the controller
gain concerning the pitch displacement θ. We wish
the pitch error converges to zero fast but with-
out undesirable oscillations. The controller gain
concerning

.
x and the amplitude of the saturation

function are selected in such a way that the mini-
aircraft reduces its speed in the x-axis fast enough.

To complete the tuning of the pitch control pa-
rameters we choose the gains concerning the x
displacement in order to obtain a satisfactory per-
formance. The computation of the control input
requires the knowledge of the various angular and
linear velocities. We obtained the angular velocity
by means of gyro Murata ENV-05F-03. The linear
velocity is not available and is estimated by using
the following reduced-order observer

.

x̂1 = x̂2 + k11(x1 − x̂1) (66)
.

x̂2 =− sin θu1 + k12(x1 − x̂1)
.

x̂3 = x̂4 + k21(x3 − x̂3)
.

x̂4 = cos θu1 − 1 + k22(x3 − x̂3)

where x̂ , [x̂,
.

x̂, ŷ,
.

ŷ]T and kij > 0 for i, j = 1, 2.
and x1 = x, x2 =

.
x, x3 = y, x4 =

.
y Then we have

the error state (see (2) and (66)) is
.

x̃ = Ax̃ + g
where

A =




−k11 1 0 0
−k12 0 0 0

0 0 −k21 1
0 0 −k22 0


 , g =




0
ε cos θu2

0
ε sin θu2




and

x̃ , [x̃1, x̃2, x̃3, x̃4]
T (67)

= [x1 − x̂1, x2 − x̂2, x3 − x̂3, x4 − x̂4]
T

we know that ‖g‖ < |ε| a. We propose the follow-
ing Lyapunov type function

V = x̃T Px̃ (68)

where

P =




1 + k12

2k11
−1

2
0 0

−1
2

1 + k2
11 + k12

2k11k12
0 0

0 0
1 + k22

2k21
−1

2

0 0
1
2

1 + k2
21 + k22

2k21k22




(69)
such that PA + AT P = −I then

.

V = x̃T (PA + AT P )x̃ + 2x̃T Pg

≤−‖x̃‖2 + 2 ‖x̃‖ ‖P‖ ‖g‖
≤−‖x̃‖2 + 2λmax(P ) |ε| a ‖x̃‖
=−‖x̃‖2 + 2λmax(P ) |ε| a ‖x̃‖ ± γ ‖x̃‖2
=− (1− γ) ‖x̃‖2 + 2λmax(P ) |ε| a ‖x̃‖
−γ ‖x̃‖2

with 0 < γ < 1. If ‖x̃‖ ≥ 2λmax(P )|ε|a
γ , then

.

V ≤
− (1− γ) ‖x̃‖2 If the perturbation satisfies

‖g‖≤ |ε| a <
1

2λmax(P )

√
λmax(P )
λmin(P )

(70)
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Fig. 3. Pitch angle and pitch control input of the
rotorcraft
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Fig. 4. y-axis and x-axis positions of the rotorcraft
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Fig. 5. Throttle control input of the rotorcraft

we have λmin(P ) ‖x̃‖2 ≤ V ≤ λmax(P ) ‖x̃‖2.
Then, for all initial condition‖x̃0‖ ≤

√
λmax(P )
λmin(P )

the solution x̃ satisfies ‖x̃‖ ≤ ke−α(t−t0) ‖x̃0‖ for

t0 ≤ t < t1 and ‖x̃‖≤ 2λmax(P )|ε|a
γ

√
λmax(P )
λmin(P ) for

t > t1 where k =
√

λmax(P )
λmin(P ) and α = 1−γ

2λmax(P ) so
that the error x̃ is uniformly ultimately bounded
by choosing kij (Khalil, 1996). The choice of the
values for a, b, c, d were carried satisfying the in-
equalities (56) and (64). However, these parame-
ters have been tuned experimentally in sequence
as they appear in the control input u2. The con-
trol objective is to make the rotorcraft hover to
reach the position (x, y) = (0, 15)cm while θ =
0o. The initial conditions are (x, ẋ, y, ẏ, θ, θ̇) =
(0, 0, 0, 0,−6o, 0o). The gain values used for the
control law are

Phase Control parameter Value

Altitude
a1
a2

0.4
0.04

Pitch control

a
b
c
d

0.25
0.12
0.6
0.03

Sample T 1
20 s

Parameter Value
k11 4
k12 2
k21 4
k22 2

Figures 3 – 5 show the performance of the con-
troller when applied to the rotorcraft.

5. CONCLUSIONS

We have presented a simple robust control strat-
egy for stabilizing the PVTOL. The Lyapunov
convergence analysis has shown that the state of
the PVTOL system converges to small neighbor-
hood of the origin. The size of such a neighbor-
hood reduces to zero as the unmodeled dynamics
converge to zero. We have been able to successuly
test the control strategy in a real application.
We controlled the altitud, the orientation and the
displacement of a radio-controlled electrical four-
rotor mini-helicopter.
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