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Abstract: Preliminary studies have shown that the aspect angle of the interceptor at |ock-
on near 180 degree is a fundamental requirement for an aerodynamically controlled
missile achieving small miss distance againg a faster target. An optima midcourse
guidance law based on the optimal trgjectory shaping is developed to meet this
prerequisite. Neural networks are incorporated with the PN guidance at the termina phase
to improve the tracking accuracy. The whole defensible volume in the 3-dimesional space
is characterized and the performance robustness is also verified. Copyright © 2005 IFAC
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1. INTRODUCTION

In the area of theoretical study, optimality-based
guidance designs for guided missiles have drawn the
considerable attention of many researchersin the lagt
three decades (Bryson and Ho, 1969; Lin, 1991,
Zarchan, 1994). With regard to this theme, it has
recently been indicated that successfully intercepting
a high speed target with a reatively low speed
missile, the aspect angle between the missile and
target flight path is extremely limited to within 180-
degree plus or minus few degrees (Kuroda and
Imado, 1988; Imado and Kuroda, 1992). Such a
geometric arrangement will minimize the required
lateral acceleration for interceptors to effectively
engage hypersonic targets.

Speed plays an important role in determining missile
aerodynamic maneuverability. Based on this
requirement and the preceding investigation, the
function of midcourse guidance law is developed
here to maximizing the missile velocity and bring the
target aspect angle to 180-degree at handover as far
as possible. In our design, the trajectory shaping is
determined by the predicted lock-on point relative to
the missile and the missile' s final flight path angle.

It is aso known from the optimal control theory that
a dtraightforward solution of the optimal trajectory
shaping problem leads to a two-point boundary-value
problem (TPBVP) (Bryson and Ho; 1969) which is
too complex for red-time onboard implementation.
In this study, we extend the solution procedure
proposed by Lin and Tsai (1987) to solve the optimal

trajectory shaping problem subject to the
counterattack condition.

We aso introduce a neural network which can be
used to compensate the tracking error resulting from
modeling uncertainties or undesired disturbance
during the midcourse and terminal phases. The study
of neural networks and their wide applications has
been existence for the recent decade in identification,
signal processing, and control (Miller et al., 1991;
Narendra and Parthasarthy, 1990).

In the proposed guidance scheme, the missile
trajectory in the midcourse is designed using the
optimal trgjectory shaping guidance to intercept the
target with a near 180-degree aspect angle. During
the terminal phase, a neural network constructs a
specialized on-line control architecture, which offers
a means of synthesizing closed-loop guidance laws
for aiding the guidance command generated by
proportional navigation (PN) guidance. The neura
network cannot only perform very well for tracking
performance, but it even extends the effectively
defensive volume.

2. SYSTEM MODELS

Consider the three-dimensional  trandationa
equations of motion, used to illugtrate the missile
trajectory, shown asin Figs. 1 and 2. The missileis
modeled as a point mass and the equations of motion
are described by



v, =(T cosa-D)/m-gsiny (1a)

y=(L+Tsina)cos@/(nv,)—gcosy!/ v, (1b)
Y =(L+Tsina)sngl/(mv, cosy) (1c)
X, =V COS )y Ccosy (1d)
Y, =V,,cosysny (le)
h, =v_ siny (1f)

where the state variables are the position coordinates
X, y, and h; pitch angle y; yaw angle ¢/; angle-of-
attack a ; roll angle @ ; and the thrust and mass are
predefined functions of time. The V,, denotes the

total missile speed. Moreover, the aerodynamic
forces of the missile are evaluated as the following
expressions.

L= %pvrisncmp D= %pvrianmD- @

Suppose that the ballistic target system model in
radar coordinates centered at radar site is expressed

2
¥ =5 geosysny, +a,
pv‘ 3
v, =- 2/; g cosy, cosy, +a,
Vi == Zéggnyl g+a,
where vV, and V, denote the velocity

Y, and H axes
respectively; a,(t).a, () and a,(t) ae uncertain
accelerations due to model uncertainties and ballistic
target's maneuvering, y,,y, and the baligic
coefficient B are defined as

components of V, aong X,

y(t)= tanl[-W] (4)

¥, (t)=tan” B =
() [wy] $Co0
where 5. W and C,, represent the reference area,

weight and zero-lift drag coefficient of the target,
respectively.

3. ATTACK STRATEGY

The guidance scheme proposed consists of
midcourse, shaping and terminal phases shown as in
Fig. 3. To design the midcourse guidance law so that
the missile attains near head-on geometry, we define
the preset lock-on point range as

R, = R+ Ry ©)
where R, is the seeker lock-on range which is
assumed to be congtant and R is the relative range
between the missile and target. The required time-to-

go for the target attaining the preset lock-on point
can be estimated as

t = —& = RpR (6)
* RP Rmxvrx + Rr'rtery + Rr'rthrh

= R R

where

Based on the t ,, obtained, the predicted lock-on
point is estimated as follows

Xf = X1 +Vtxtgop 1 yf = yt +Vtytgop hf = h[ +Vthtgop (7)

To attain the near head-on geometry, we specify the
desired flight-path angle as

0, =tar [y: i?] 9

The predicted line-of-dlight (LOS) angle with respect
to the lock-on point is given by

8 =t [h hm] (10)
8 = tan [y, ym] (1)
% X

where the subscripts v and h denote, respectively, the
vertical and horizonta planes and the following
estimations were used:

)A(( =X +Vt><f -y: =Y +Vtyf ’ ﬁ( :h( +me
with
_Rou — RosRu (12
R, RuVi * RigViy + RunVi

f=

3.1Vertical Plane Guidance

A feedback form of guidance law deduced from the
explicit guidance law is sought for the present
problem. The guidance gains of the explicit guidance
law are usually selected to shape the trgjectory for
the desired attributes (Wang, 1988; Wang et al., 1993)
with the corresponding acceleration commands in
inertial coordinates expressed in the form

(13)

K, . .
22 (rmf - rmO _Vmotgop)

= Koo
amztil(vnf - m0)+

gop gop
where 1 =[x, Vi Rl Vi = [Vi Vi Vi @
8 =By By B]” A respectively, the position,

velocity and acceleration vectors. Traditiondly, the
gains K, and K, are obtained by minimizing

IK K = [ dlaan (14)
subject to
T =V Toll) =T Vi =8 V(o) = Vi
and the given boundary conditions
Ta(t) =Ty Vnlty) =Vy
In the present problem . On the

’ =t\R:Rw =ty + g

basis of this formulation we would like to find the
optimal time varying K, and K, those maximize the

missile velocity at hand-over and sdtisfy the
constraint imposed on the solution.

Using the approximation R= ‘r _r‘g the

m-gop

normal accel eration can be represented as

a'm 1vav + KZV P (15)

where



2
a,=-—msng, :—VEmSinJV
gop

R . V2o
a,=——sno, =Esmc7V

9op
with the predicted velocity angle error between the
present and final vectors

and the heading error angle
g,=y-8, (16b)

See Fig. 4 for the definitions.

Based on this observation, the optimal midcourse
guidance law should take the following form:

a, = 1,(8,,0,) (17)
For the terminal guidance law, we select the heading
error angle g, and its rate O, as the guidance

system input and correct the equivalent guidance
gains accordingly. That is the terminal guidance law
takes the following form:

a, = f(o,0,) (18)

3.2 Horizontal Plane Guidance

The similar idea can be adopted for the horizontal
plane guidance law except that all gravity terms are
omitted. In the horizontal plane, the predicted
vel ocity and heading error angles are given by

O =~y (199)
Oy :l//—éh (19b)
(see Fig. 5). In addition, the control variable @
becomes 3 (side dip angle), ) becomes ¢ and &

becomes the inertial line-of-sight angle on the
horizontal plane.

4, GUIDANCE DESIGN
4.1Vertical Plane Guidance

Midcourse phase; optimal sense-based midcourse
guidance. For the verticd plane guidance design,
the equations of motion can be deduced from (1) as
follows

1 DAY e
vm—a(Tcosa D) -gsiny (20)

1 (Tsina +L) —igcosy
v,

X, =V, cosy

h, =v,siny
Our aim is to minimize energy lose and bring the
velocity error to zero a handover. Mathematically,
the objective is equivalent to finding the optimal
time-varying gans K, and K, in (14) those

y:

maximized the terminal speed at the lock-on point.
The performance index isthus defined as

J,(K.,K,) =maxv,, (21)
subject to the boundary conditions o,t)=0 and
J,(t,)=0- A convenient way to derive the optimal

gains K,, and K, with respect to J, is to replace

(14) with the instantaneous curvature x = B/ V2 i.e
(22)

/(:—&sindv +&sinav
R R
Yk is known as radius curvature. Maximizing the
missile terminal velocity of (21) is equivalent to
maximizing

oo AV
Jz(Klvaz\/):J.: ngR (23)

For aerodynamically controlled missiles with the
equations of motion governed by (20), J, can be
further transformed into the maximization of the
following cost function (Lin and Tsai, 1987)
33(Ky Ky) = [ (1+ szsecavdR (24)

R 2F,

where F, is the trajectory-shaping coefficient

defined by
- D,L, (T/L, +1)
YA mAVEu+TIL)

with L, =0qsC2, subject to the constraint

% =-Kseco, (259)

do, _ 1 (25b)
=-KseCOo, - —tang,

drR R

and the boundary conditions

o,(t)=0s y(t;)=V;
Note that the state equations (25) governing V' and
o, are derived from the following state equations

R=-v, cosC, (269)

g, =YnSNY, (26D)
Asin (Lin and Tsai, 1987), it is possible to derive a
closed-form of the optimal closed-loop feedback
control gains K, and K, by applying the optima
control theory. First define the Hamiltonian H as
H, =[1+ al @7
2

F2

2

]seca -A Etana —(A, +A)Kkseco,
\ a, R \ g, 14 \

where A, and A, are the Largrange multipliers

which correspond, respectively, to the congtraints
(25a) and (25b). The optima curvature K satisfies
the Euler-Largrange equations:
aHV:O %:—aHV %:—% (28)
dy ' drR g,

dk  dR
After trivial mathematical derivations, we can have

_ 1 1r ¢ -
Cl_D(FV.F%){FQ[e (F,+D-e™(F,+D] (29)
sing, —F,(e"™ _e_F’V)SinUV}

{—%[eﬁv (F.-D-¢"(F,-D] (29b)

sing, +F,(e™ —eF'V)sinUV}

C, = !
D(R,.R)

Fv
I:( v? l) R e '( Arv 2) € ( Arv 2)

with F, =F (R-R,) - Therefore, the optimal

curvature K in (38) isgiven by
[-€" (F, +1) e (F, ~1) +2FR]snd, (30)

“RD(F,R)
F?
D(FV,R)

+

(eFNv +e o — 2) dng,



Comparing (30) to (22), the resulting optimal control
gains K; and K, are obtained as

_FRJ[e (R +D+e™(F, -D-2F,] (319
YT e (Fyo =2 - (F,, +2)+4
Fo(e™ +e ™ -2) (31b)

K, =—
¥ (R, —2) - (Fy, +2) +4

After the pitching acceleration command has been
obtained, the control variable ¢, isrelated to a, by

g = Bw (32)
" pv:wsmCmLa
Shaping phase: PN shaping guidance. In this phase,
minimizing the position eror for satisfactory

accuracy becomes more important. To this end, we
set the guidance gain K, = 0. An appropriate form of

the gain K, is then constructed such that the

acceleration command issued from the midcourse
and terminal phases are linked smoothly.

The PN acceleration command can be stated as
aPN = Nvmgv (33)
where N is the navigation ratio and 9V indicates the

line-of-sight angle rate. In tactica radar homing
missiles using PN guidance, the seeker provides an
effective measurement of the line-of-sight angle rate.
To relate the PN to the midcourse guidance discussed
previoudly, (33) can be rewritten as

a, = Nvm%sin’l(%] (34)

N 1 thanV
"cosf,| Rt

g0
where; - _5/ :
% V,

Setting i, =0, then equating the optimal trajectory

shaping guidance (15) with the proportional guidance
command (34) gives

K . 1 (v, -v,sin v.siné,
- RZVVianV:NVm th m y+ c v

cosg, R R

From which we have the guidance gain

KZV:_.L[E"'VSTIBV] (35)

sing,cosé, | v,,
where ,, :\% and the guidance law is
N .

By =~ (1, +V,5iN ) (30)
The control variable is obtained via

o, = 2o (37)

PN pVTZTISTICmLH

Terminal phase; Combination of PN shaping and
neural net-based terminal guidance. We seek to
determine a multilayer feedforward neural network
NN(Y;W,V), y=[o, o,]" such that the following

instantaneous normed-square error is minimized with

respect to the sat of parameter matrices
w={W:w?, . w" and v ={viVv?, . vV}:
1
E=J10/0 ¥, () + (/) - 6(K)] (38)

where ¢ > o is used to weight the heading error angle.
During the terminal phase, y, (k) is determined by

_ . a(h -h, where  X; = X, +V,t ,
y,-tan[r me] x'go

o =tan‘1[R"‘“]' If the seeker fails to track the target,

t could be

go

tgo = RZ/Rmerx + I%myvry + I%mhvrh )

In the (N+1)-layer network, the input to the network
is 2% =y. The input and output are related by the
recursve relationship

estimated via

net! =Wz VI N-1 (39)
Z = f,(net’)

and
net™ =wWhNzNt+y N (40)
zN =net"

The output is
w = z f,(R)
where
1

(RRa)
1+e /R

with R and R, being the appropriate range constants,

f(R) =

f (R) is used to prevent large transent resulting

from the neurd network when missiles enter the
terminal phase guidance. Theweights W’ and V' are
of the appropriate dimension. V' is the connection
weight vector to the bias node. The activation
function vectors f; (0 j=12,...,N-1, are usualy
chosen to be some kind of sigmoids but they may
possibly be simple identity gains for some cases. The
neural network can thus be succinctly expressed as
NN(Y;W,V) = iy W W (W2 (WY +VY)
+V) 44N+
As the back propagation agorithm, the gradient
descent method is developed to train the network
weights. For the hidden layers, the weight adaptation
algorithm is given by
AW (K) =1, EK),
AV (k) =7, EK),
where the gradient vector .
g Oy E(k) = 0E(|%Wl (k)

j=1..N  (41)

For the output layer, the connection weights are
adapted via
AW (K) = -re(Kk) 2 (k) (429)
AVN(K) =E(K) (42b)

The whole guidance command is the combination of

PN shaping and neural net-based terminal guidance:
al = aNN + aPN

Fig. 6 shows the schematic diagram of the resulting

guidance system.

4.2 Horizontal Plane Guidance

The analytic optimal guidance gains K, and K, for

the horizontal midcourse guidance law can be
analogously derived the same as those shown in (314)



and (31b) by considering the horizontal equations of
motion which are governed by the state variables v _,
¢, x, and y_, and consder the sde slip angle g3

as the control variable The resulting laterd
acceleration command can be directly obtained as
follows

a,, =(—%hsind1 +K—§“sinah]vfn (43)
The control variable @ isthen commanded as
¢:§nl[ ma"”}’ ] (44)
Tsna+L

5. SMULATION RESULTS

The acceptable final miss distanceis limited to be 25
m or less. Also, suppose that the missile's thrugt
vanishes at 7.5 seconds. The range constants
R,and R, were set as 13000 and 1000, respectively.

The tactical ballitic target with the incoming speed
of 1800 n/s. For the target, related parameters were
given as B, = 2440 kg/m?, Cp, =1.81 and M, =1200
kg. Suppose that the ground radar has detected the
tactical ballistic target after reentry at arange of 50.0
km. The target evasive accelerations a, (t) and o (t)

were generated by two first-order Gauss-Markov
processes to datistically represent 5 g lacted
accelerations; for the axial direction, a, (t)=0-

Fig. 7 shows the resulting defensible volume. The
defensible volumes shrink at the highest and lowest
altitudes. This is due to the fact that the missile’'s
maneuverability reduces with the increasing height.
On the other hand, if the interceptor engages the
target at the lower atitude, the total flight time might
not be enough for it to build up speed. For the
interception point A ((5562,5624,14672) (M)), the
initial target position was (20000, 20000, 36000) (M)
and the azimuth angle was 45 degrees. The find
interception time is 16.92sec. and the MD is 0.56 m.
The fina missile velocity is 1021 (my/s). With regard
to the guidance performance, related tracking
responses, control histories and missile velocity are
shown in Fig. 8. It is found from the profiles of o
and g that the missile successfully achieved the
head-on condition while it entered the terminal phase.
In addition, one can also observe that the missile
didn't consume much control energy during the
midcourse guidance phase. Fig. 9 illustrates the 3D
trajectory of engagement.

6. CONCLUSION

An optimality-based missile guidance system
designed to counter hypersonic target in the three-
dimensional space is studied in which a mixed
optima tragjectory shaping guidance and neurd
network correction guidance agorithm is devel oped.
The optimal trajectory shaping guidance maximizes
the fina speed of the midcourse phase at lock-on
point and offers a better counterattack condition.
Neura networks incorporated with the PN guidance
in the terminal phase are used to compensate for the

tracking error suitable for real-time implementation.
It is found that mixed guidance scheme can
effectively extend the defensible volume. Simulation
results confirm superiority of the proposed scheme
over proportiona navigation guidance and show its
performance robustness.
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Fig. 1 Three-dimensional intercept geometry



Fig. 2 Definitions of the angle-of-attack @ and
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