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Abstract: Preliminary studies have shown that the aspect angle of the interceptor at lock-
on near 180 degree is a fundamental requirement for an aerodynamically controlled 
missile achieving small miss distance against a faster target. An optimal midcourse 
guidance law based on the optimal trajectory shaping is developed to meet this 
prerequisite. Neural networks are incorporated with the PN guidance at the terminal phase 
to improve the tracking accuracy. The whole defensible volume in the 3-dimesional space 
is characterized and the performance robustness is also verified.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
In the area of theoretical study, optimality-based 
guidance designs for guided missiles have drawn the 
considerable attention of many researchers in the last 
three decades (Bryson and Ho, 1969; Lin, 1991; 
Zarchan, 1994). With regard to this theme, it has 
recently been indicated that successfully intercepting 
a high speed target with a relatively low speed 
missile, the aspect angle between the missile and 
target flight path is extremely limited to within 180-
degree plus or minus few degrees (Kuroda and 
Imado, 1988; Imado and  Kuroda, 1992). Such a 
geometric arrangement will minimize the required 
lateral acceleration for interceptors to effectively 
engage hypersonic targets. 
 
Speed plays an important role in determining missile 
aerodynamic maneuverability. Based on this 
requirement and the preceding investigation, the 
function of midcourse guidance law is developed 
here to maximizing the missile velocity and bring the 
target aspect angle to 180-degree at handover as far 
as possible. In our design, the trajectory shaping is 
determined by the predicted lock-on point relative to 
the missile and the missile’s final flight path angle. 
It is also known from the optimal control theory that 
a straightforward solution of the optimal trajectory 
shaping problem leads to a two-point boundary-value 
problem (TPBVP) (Bryson and Ho; 1969) which is 
too complex for real-time onboard implementation. 
In this study, we extend the solution procedure 
proposed by Lin and Tsai (1987) to solve the optimal 

trajectory shaping problem subject to the 
counterattack condition.  
 
We also introduce a neural network which can be 
used to compensate the tracking error resulting from 
modeling uncertainties or undesired disturbance 
during the midcourse and terminal phases. The study 
of neural networks and their wide applications has 
been existence for the recent decade in identification, 
signal processing, and control (Miller et al., 1991; 
Narendra and Parthasarthy, 1990).  
 
In the proposed guidance scheme, the missile 
trajectory in the midcourse is designed using the 
optimal trajectory shaping guidance to intercept the 
target with a near 180-degree aspect angle. During 
the terminal phase, a neural network constructs a 
specialized on-line control architecture, which offers 
a means of synthesizing closed-loop guidance laws 
for aiding the guidance command generated by 
proportional navigation (PN) guidance. The neural 
network cannot only perform very well for tracking 
performance, but it even extends the effectively 
defensive volume. 

 
 

2. SYSTEM MODELS 
 
Consider the three-dimensional translational 
equations of motion, used to illustrate the missile 
trajectory, shown as in Figs. 1 and 2. The missile is 
modeled as a point mass and the equations of motion 
are described by 



     

( cos ) / sinmv T D m gα γ= − −
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                      (1a) 

( sin )cos /( ) cos /m mL T mv g vγ α φ γ= + −
�              (1b) 

( sin )sin /( cos )mL T mvψ α φ γ= +
�

                (1c) 

cos cosm mx v γ ψ=
�

                                              (1d) 

cos sinm my v γ ψ=�                                            (1e) 

sinm mh v γ=
�

                                                       (1f) 

where the state variables are the position coordinates 
x, y, and h; pitch angle γ ; yaw angle ψ ; angle-of-

attack α ; roll angle φ ; and the thrust and mass are 

predefined functions of time. The mv denotes the 

total missile speed. Moreover, the aerodynamic 
forces of the missile are evaluated as the following 
expressions:    
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Suppose that the ballistic target system model in 
radar coordinates centered at radar site is expressed 
as 
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where ,tx tyv v  and thv  denote the velocity 

components of tv  along X, Y, and H axes, 

respectively; ( ) ( ),tx tya t a t  and ( )tha t  are uncertain 

accelerations due to model uncertainties and ballistic 
target's maneuvering, 
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where ,ts W  and 
0tDC  represent the reference area, 

weight and zero-lift drag coefficient of the target, 
respectively. 

 
 

3. ATTACK STRATEGY 
 
The guidance scheme proposed consists of 
midcourse, shaping and terminal phases shown as in 
Fig. 3. To design the midcourse guidance law so that 
the missile attains near head-on geometry, we define 
the preset lock-on point range as 

p lockR R R= +                                          (5) 

where 
lockR  is the seeker lock-on range which is 

assumed to be constant and R  is the relative range 
between the missile and target. The required time-to-
go for the target attaining the preset lock-on point 
can be estimated as 

pP
gop

P mtx rx mty ry mth rh

R RR
t

R R v R v R v
= − =

+ +
�           (6) 

where 
2 2 2
mtx mty mthR R R R= + +  

Based on the gopt  obtained, the predicted lock-on 

point is estimated as follows 
 ,  , f t tx gop f t ty gop f t th gopx x v t y y v t h h v t= + = + = +     (7) 

 
To attain the near head-on geometry, we specify the 
desired flight-path angle as 
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The predicted line-of-slight (LOS) angle with respect 
to the lock-on point is given by 
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where the subscripts v and h denote, respectively, the 
vertical and horizontal planes and the following 
estimations were used: 
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3.1Vertical Plane Guidance 
 
A feedback form of guidance law deduced from the 
explicit guidance law is sought for the present 
problem. The guidance gains of the explicit guidance 
law are usually selected to shape the trajectory for 
the desired attributes (Wang, 1988; Wang et al., 1993) 
with the corresponding acceleration commands in 
inertial coordinates expressed in the form 

1 2
0 0 02
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K K
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where [  ] , [  ]T T
m m m m m mx my mhr x y h v v v v= =
3 3  and 

[ ]T
m mx my mha a a a=
4  are, respectively, the position, 

velocity and acceleration vectors. Traditionally, the 
gains 1K  and 2K  are obtained by minimizing  
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0 0 0 0, ( ) , , ( )m m m m m m m mr v r t r v a v t v= = = =
8�8 8 8 818 8 89 9  

and the given boundary conditions 
( ) , ( )m f mf m f mfr t r v t v= =
: : : :  

In the present problem, 
0

lock
f gopR R

t t t t== = + . On the 

basis of this formulation we would like to find the 
optimal time varying 

1K  and 
2K  those maximize the 

missile velocity at hand-over and satisfy the 
constraint imposed on the solution. 
 

Using the approximation 
mf m gopR r r v t= − ≅
; ;  the 

normal acceleration can be represented as 

1 2mp v v v pa K a K a= +                               (15) 

where 
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with the predicted velocity angle error between the 
present and final vectors 

v frδ γ= −
�                                           (16a) 

and the heading error angle 

v vσ γ θ= −
�

                                         (16b) 

See Fig. 4 for the definitions. 
 
Based on this observation, the optimal midcourse 
guidance law should take the following form:  

( , )m m v vfα δ σ=                                      (17) 

For the terminal guidance law, we select the heading 

error angle vσ  and its rate vσ�
 as the guidance 

system input and correct the equivalent guidance 
gains accordingly. That is the terminal guidance law 
takes the following form: 

( , )t t v vfα σ σ= �                                      (18) 
 
 
3.2 Horizontal Plane Guidance 
 
The similar idea can be adopted for the horizontal 
plane guidance law except that all gravity terms are 
omitted. In the horizontal plane, the predicted 
velocity and heading error angles are given by 

h fδ ψ ψ= −
�                                      (19a) 

h hσ ψ θ= −
�

                                     (19b) 

(see Fig. 5). In addition, the control variable α  

becomes β (side slip angle), γ  becomes ψ  and θ  
becomes the inertial line-of-sight angle on the 
horizontal plane. 
 
 

4. GUIDANCE DESIGN 
 
4.1Vertical Plane Guidance 
 
Midcourse phase; optimal sense-based midcourse 
guidance.   For the vertical plane guidance design, 
the equations of motion can be deduced from (1) as 
follows 
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Our aim is to minimize energy lose and bring the 
velocity error to zero at handover. Mathematically, 
the objective is equivalent to finding the optimal 
time-varying gains 

1K  and 
2K  in (14) those 

maximized the terminal speed at the lock-on point. 
The performance index is thus defined as 

1 1 2( , ) max mfJ K K v=                            (21) 

subject to the boundary conditions: ( ) 0v ftσ =  and 

( ) 0v ftδ = . A convenient way to derive the optimal 

gains 1vK  and 
2vK  with respect to 1J  is to replace 

(14) with the instantaneous curvature 2
mp ma vκ = , i.e. 

1 2sin sinv v
v v

K K

R R
κ δ σ= − +

                       (22) 

1 κ  is known as radius curvature. Maximizing the 

missile terminal velocity of (21) is equivalent to 
maximizing 
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For aerodynamically controlled missiles with the 
equations of motion governed by (20), 2J  can be 
further transformed into the maximization of the 
following cost function (Lin and Tsai, 1987) 
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where 
vF  is the trajectory-shaping coefficient 

defined by 
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and the boundary conditions 

( ) 0v ftσ = ,  ( )f ftγ γ= �  

Note that the state equations (25) governing γ  and 

vσ  are derived from the following state equations 

cosm vR v σ= −
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As in (Lin and Tsai, 1987), it is possible to derive a 
closed-form of the optimal closed-loop feedback 
control gains 1K  and 2K  by applying the optimal 
control theory. First define the Hamiltonian 

vH  as 
2
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where 
vσλ  and γλ  are the Largrange multipliers 

which correspond, respectively, to the constraints 
(25a) and (25b). The optimal curvature κ satisfies 
the Euler-Largrange equations: 

0,  ,  vv v v

v

ddH H H

dR dR
σγ λλ

κ γ σ
∂ ∂ ∂= = − = −
∂ ∂ ∂

            (28) 

After trivial mathematical derivations, we can have 
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Comparing (30) to (22), the resulting optimal control 
gains 1K  and 2K  are obtained as 
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After the pitching acceleration command has been 
obtained, the control variable mα  is related to 

mpa  by 

2

2
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m
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α
ρ
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Shaping phase: PN shaping guidance.    In this phase, 
minimizing the position error for satisfactory 
accuracy becomes more important. To this end, we 
set the guidance gain 

1 0vK = . An appropriate form of 

the gain 
2vK  is then constructed such that the 

acceleration command issued from the midcourse 
and terminal phases are linked smoothly. 
 
The PN acceleration command can be stated as 

PN m va Nv θ= �                                      (33) 

where N is the navigation ratio and vθ�  indicates the 

line-of-sight angle rate. In tactical radar homing 
missiles using PN guidance, the seeker provides an 
effective measurement of the line-of-sight angle rate. 
To relate the PN to the midcourse guidance discussed 
previously, (33) can be rewritten as 
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where 
go

c

Rt V= − . 

 
Setting 

1 0vK = , then equating the optimal trajectory 

shaping guidance (15) with the proportional guidance 
command (34) gives 
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From which we have the guidance gain 
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The control variable is obtained via 
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Terminal phase; Combination of PN shaping and 
neural net-based terminal guidance.   We seek to 
determine a multilayer feedforward neural network 
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instantaneous normed-square error is minimized with 
respect to the set of parameter matrices 
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where 0ξ ≥  is used to weight the heading error angle. 
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In the (N+1)-layer network, the input to the network 
is 0z y= + . The input and output are related by the 
recursive relationship 
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with 
1 2and c cR R  being the appropriate range constants, 

( ) of R  is used to prevent large transient resulting 

from the neural network when missiles enter the 
terminal phase guidance. The weights jW  and jV  are 
of the appropriate dimension. jV  is the connection 
weight vector to the bias node. The activation 
function vectors 1,,2,1),( −=⋅ Njf j - , are usually 

chosen to be some kind of sigmoids but they may 
possibly be simple identity gains for some cases. The 
neural network can thus be succinctly expressed as 
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As the back propagation algorithm, the gradient 
descent method is developed to train the network 
weights. For the hidden layers, the weight adaptation 
algorithm is given by 
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For the output layer, the connection weights are 
adapted via 
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The whole guidance command is the combination of 
PN shaping and neural net-based terminal guidance:  

t NN PNα α α= +  

Fig. 6 shows the schematic diagram of the resulting 
guidance system.  
 
 
4.2 Horizontal Plane Guidance 
 
The analytic optimal guidance gains 

1hK  and 
2hK  for 

the horizontal midcourse guidance law can be 
analogously derived the same as those shown in (31a) 



     

and (31b) by considering the horizontal equations of 
motion which are governed by the state variables 

mv , 

ψ , 
mx  and 

my , and consider the side slip angle β  

as the control variable. The resulting lateral 
acceleration command can be directly obtained as 
follows 

21 2sin sinh h
my h h m

K K
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δ σ
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= − +
� �� �              (43) 

The control variable φ  is then commanded as 
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5. SIMULATION RESULTS 
 
The acceptable final miss distance is limited to be 25 
m or less. Also, suppose that the missile’s thrust 
vanishes at 7.5 seconds. The range constants 

1 2and c cR R  were set as 13000 and 1000, respectively. 

The tactical ballistic target with the incoming speed 
of 1800 m/s. For the target, related parameters were 
given as 22440 kg mtβ = , 

0 1.81tDC =  and 
tM =1200 

kg. Suppose that the ground radar has detected the 
tactical ballistic target after reentry at a range of 50.0 
km. The target evasive accelerations ( )tya t  and ( )tha t  

were generated by two first-order Gauss-Markov 
processes to statistically represent 5 g lacteal 
accelerations; for the axial direction, ( ) 0txa t = .  

 Fig. 7 shows the resulting defensible volume. The 
defensible volumes shrink at the highest and lowest 
altitudes. This is due to the fact that the missile’s 
maneuverability reduces with the increasing height. 
On the other hand, if the interceptor engages the 
target at the lower altitude, the total flight time might 
not be enough for it to build up speed. For the 
interception point A ( (5562,5624,14672)  (m)), the 

initial target position was (20000, 20000, 36000) (m) 
and the azimuth angle was 45 degrees. The final 
interception time is 16.92sec. and the MD is 0.56 m. 
The final missile velocity is 1021 (m s).  With regard 

to the guidance performance, related tracking 
responses, control histories and missile velocity are 
shown in Fig. 8. It is found from the profiles of δ  
and σ  that the missile successfully achieved the 
head-on condition while it entered the terminal phase. 
In addition, one can also observe that the missile 
didn’ t consume much control energy during the 
midcourse guidance phase. Fig. 9 illustrates the 3D 
trajectory of engagement.  
 
 

6. CONCLUSION 
 
An optimality-based missile guidance system 
designed to counter hypersonic target in the three-
dimensional space is studied in which a mixed 
optimal trajectory shaping guidance and neural 
network correction guidance algorithm is developed. 
The optimal trajectory shaping guidance maximizes 
the final speed of the midcourse phase at lock-on 
point and offers a better counterattack condition. 
Neural networks incorporated with the PN guidance 
in the terminal phase are used to compensate for the 

tracking error suitable for real-time implementation. 
It is found that mixed guidance scheme can 
effectively extend the defensible volume. Simulation 
results confirm superiority of the proposed scheme 
over proportional navigation guidance and show its 
performance robustness. 
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Fig. 1 Three-dimensional intercept geometry 
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Fig. 2 Definitions of the angle-of-attack α  and 

rolling angle φ  
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Fig. 3 Engagement scenario 

v
fv

( ),t tT x h

vσ

vδ

vθ
frr

( , )M x h
X Axis

H Axis

 
 

Fig. 4 Definitions of σ  and δ  on the vertical plane 
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Fig. 5 Definitions of σ  and δ  on the horizontal 
plane 
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Fig. 6 Implementation of the complete guidance 

scheme 

 
 
Fig. 7 Defensible volumes against the target 
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Fig. 8 Control histories corresponding to the 

defensible point A; (a) optimal control command 
of the vertical plane, (b) neural control command 
in the vertical plane 
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Fig. 9 3-D tracking trajectory w.r.t. the defensible 

point A 


