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1. INTRODUCTION

Modern control design methods, when applied
to multivariable (MIMO) plants usually lead to
controllers of complex structure (Skogestad and
Postlethwaite, 1996), (Zhou and Doyle, 1998),
(Goodwin et al., 2001). In those cases every ma-
nipulated plant input depends on more than two
measurements, usually leading to a full MIMO
controller; they are known as centralized con-
trollers. From a practical viewpoint, those solu-
tions have drawbacks related to the difficulty to
build an insight, to tune the controller in the
field and to achieve loop integrity. Moreover, there
are situations when the complexity of a central-
ized control system design prevents it from being
technically or economically feasible (Sandell et
al., 1978), (Yuz and Goodwin, 2003). Easy un-
derstandable and tunable strategies are preferred,
as well as those which have proven useful in the
past like simple local PID tuning (Yuz and Good-
win, 2003).
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As a conceptual counterpart of centralized strate-
gies, decentralized strategies have been developed.
In the standard square decentralized structure,
every manipulated plant input depends on only
one measurement.

In the framework of nominal design, the perfor-
mance achievable with centralized control is al-
ways superior to that achievable with decentral-
ized control. However, decentralized controllers
have advantages. Those advantages originate in
their simplicity, their connection with classical
single-input single-output control and in imple-
mentation and tuning issues (Conley, 2000), (Yuz
and Goodwin, 2003). Nevertheless, that approach
to control system design poses several funda-
mental questions (Sourlas and Manousiousthakis,
1995), (Goodwin et al., 1999), (Salgado and Con-
ley, 2004). Among those questions are, firstly, how
to select those measurements that will be used
to generate every plant input, i.e., how to pair
inputs and outputs, and secondly, once the pairing
has been decided, how to synthesize, if possible, a
stabilizing controller.



Recent references that compile classical results
related to the first question can be found in
(Conley, 2000), (Salgado and Conley, 2004) and in
the references therein. The main drawback of clas-
sical interaction measures (RGA, DRGA, NI) is
that they do not consider the dynamics of the pro-
cess, since their either rely only on the frequency
response at DC or, when the complete frequency
axis is taken into account (as the DRGA does),
they lead to results which are hard to analyze and
to use. Therefore, most of that work is restricted
to the 2 × 2 case and only in simple cases they
help in the higher dimensional structure selection
problem. A new tool called the participation ma-
trix (PM) based on Gramians has been proposed
in (Salgado and Conley, 2004). This interaction
measure condenses information of the dynamics
of the plant in a set of real numbers, allowing to
easy identify the interaction structure of a given
plant, thus providing useful information to decide
on the input-output pairing.

With regard to the second question stated above,
this paper proposes a strategy based on a H2

decentralized model matching problem. As in the
centralized case (e.g. (Goodwin et al., 2001)), an
important first step is to parameterize all sta-
bilizing controllers having certain structure. In
(Gündes and Desoer, 1990) the set of all sta-
bilizing decentralized controllers is characterized
in terms of a number of stable parameters. It is
also shown that the stability of the decentralized
closed loop is equivalent to the unimodularity of
some of those parameters. An equivalent formula-
tion was presented in (Manousiousthakis, 1993),
where the set of stabilizing decentralized con-
trollers is described in terms of a stable param-
eter that must satisfy a finite set of quadratic
constraints. In that work implications on optimal
decentralized synthesis are briefly discussed.

In (Sourlas and Manousiousthakis, 1995) the pa-
rameterization introduced in (Manousiousthakis,
1993) is used to state the decentralized model
matching problem. This approach is highly com-
plex due to the non-convex nature of the asso-
ciated optimization problem, as noted in (Sourlas
and Manousiousthakis, 1995). In spite of the men-
tioned difficulties, in (Sourlas and Manousiousthakis,
1995) an approximation approach to solve the l1
discrete time optimal control problem in the linear
time invariant case is used. Due to the numerical
nature of this solution, no closed form of the
controller is given.

To avoid the high complexity of the mentioned
optimization problem, a weighting function that
makes the problem convex can be considered in
the formulation of the functional (Goodwin et
al., 1999). However this approach does not guar-
antee a stabilizing solution, since the weighting

factor depends explicitly upon the not known pa-
rameter. Moreover, the latter also implies that the
minimization does not clearly reflects the desire
to achieve a good fit in some frequency range: the
weight is unknown.

In (Yuz and Goodwin, 2003) an optimal Youla
parameter is found for a diagonal model of the
process and, upon linear approximations, a min-
imization problem is proposed and solved using
standard LQR theory that allows to find a cor-
recting term that minimizes some quadratic mea-
sure of the achieved (real) sensibility. The issue
of stability is not addressed in (Yuz and Good-
win, 2003).

In all the references mentioned above, the stability
is guaranteed through methods which are quite
involved and, therefore, they obscure conceptual
aspects such as design trade-offs or relations to
other synthesis methods. Moreover, in those cases
there is no closed form for the controller, since
the procedures rely on numerical methods. On
the other hand, methodologies that lead to closed
form controller and more conceptually significant
solutions often oversimplify the analysis and sta-
bility must be tested separately.

This work proposes a methodology to deal with
full decentralized controller synthesis in the case
of open loop stable plants in the discrete time
domain. Sufficient and necessary conditions for
the stability of the resulting closed loop are es-
tablished and the method is illustrated with ex-
amples.

This method solves a problem that is conceptu-
ally equivalent to the quadratic model matching
problem, but restricted to the decentralized case
subject to some additional constraints.

The paper is organized as follows: section §2 de-
fines the decentralized optimal control problem
and gives some preliminary results. Section §3
presents the proposed synthesis method and sec-
tion §4 includes examples and a discussion of the
results. Section §5 presents concluding remarks.

2. PRELIMINARIES AND PROBLEM
DEFINITION

The space (R)Hp×p
2 is defined as the space of all

(real rational) p × p transfer matrices which are
functions of the complex variable z, are analytical
∀ |z| ≥ 1 and are strictly proper. (R)H∗p×p

2 ⊃
(R)Hp×p

2 is the space of all (real rational) p ×
p transfer matrices that are stable and proper
(biproper or strictly proper).

Due to the strictly proper nature of almost every
real process, we will restrict ourselves to plant



models Go(z) ∈ RHp×p
2

3 . In this paper, we will
use the Youla parameterization of all stabilizing
controllers for an open loop stable process. Using
this, it is possible to write any proper stabilizing
controller C(z) as (Goodwin et al., 2001)

C(z) = (I−Q(z)Go(z))−1Q(z) (1)

with Q(z) ∈ H∗2 (Q(z) is called the Youla param-
eter).

Throughout this paper it will be assumed that
Go(z), C(z) and Q(z) are non singular for almost
all z. Also, [X]ij = Xij will denote the ij entry of
X (boldface will be used to denote matrices and
vectors and normal face will be used for scalars).

Lemma 1. Consider (1); if Go(z) ∈ RH2, then
C(z) is a proper diagonal controller if and only if

[Q−1]ij(z) = Goij (z) ∀i 6= j, (2)

and lim
z→∞

[Q−1]ii(z) 6= 0 ∀i. (3)

Proof: The results follow noting that (1) ⇔
C−1(z) = Q−1(z)−Go(z) and using the fact that
limz→∞Go(z) = 0.

For details see (Silva, 2004). 222

Note that equation (3) is equivalent to require
that Q−1(z) is either biproper or improper.

The previous lemma states sufficient and neces-
sary conditions to obtain a proper diagonal con-
troller, but it does not address the issue of decen-
tralized stabilization. In strictly theoretical terms,
it is possible to address the decentralized stability
problem in the way shown by the next observa-
tion, which follows immediately from lemma 1:

Observation 1. If Go(z) ∈ RH2, then all decen-
tralized stabilizing controllers can be written as

C(z) = (I−Q(z)Go(z))−1Q(z) (4)

where Q(z) is in H∗2 and satisfies (2) (note that
(3) is satisfied for all Q(z) ∈ H∗2 that satisfies (2)).

Therefore, what is needed next is a procedure
to find stable and proper Youla parameters that
satisfy (2). Otherwise, the above observation does
not have much practical interest. Nevertheless, ob-
servation 1 can be used to formulate the following
optimal synthesis problem in H∗2:

Problem 1. (Optimal decentralized control). Given
a process model Go(z) ∈ RH2, find the Youla
parameter Qd

opt(z) that satisfies

Qd
opt(z) = arg min

Q(z)∈[H∗2 ]d
||F (Q(z),Go(z))||22 (5)

3 in the sequel we will drop the subindex p × p and,
otherwise stated, we will assume that all involved matrices
have this dimension.

where [H∗2]d denotes the set of all Youla param-
eters in H∗2 that satisfy (2). F (Q(z),Go(z)) de-
scribes any functional whose 2 norm minimization
is meaningful regarding control loop performance.

It is important to note that if one could solve the
previous problem, the closed loop stability would
be automatically guaranteed, since H∗2 contains
only stable transfer functions.

A common choice for F is

F (Q(z),Go(z)) =
(I−Go(z)Q(z))v

z − 1
; v ∈ Cn×1

(6)

In this case, (5) leads to the minimization of
the 2-norm of the control loop error with a step
change in the reference. In the time domain, this
is equivalent to minimize the sum of the quadratic
error and it underlines the role of inversion in
the solution of the control problem (Goodwin et
al., 2001).

Solving problem 1 subject to (6) is very hard
due to the non convex nature of the con-
straints that (2) imposes on Q(z) (Sourlas and
Manousiousthakis, 1995), (Goodwin et al., 1999),
(Yuz and Goodwin, 2003). In (Sourlas and Ma-
nousiousthakis, 1995) an approximate solution to
the related l1 version of problem 1 is derived.
However, no closed form of the optimal Youla
parameter or controller is given.

One way of circumventing the difficulties men-
tioned in the last paragraph, is to choose F as:

F (Q(z),Go(z)) =
C(z)−1

z − 1
=

Q−1(z)−Go(z)
z − 1

(7)

This choice intends to obtain a controller with the
highest possible gain at all frequencies and with
infinite DC gain, i.e. with integration. This choice
also facilitates the satisfaction of the constraints
imposed by lemma 1.

3. DECENTRALIZED SYNTHESIS

This section presents a procedure to find Youla
parameters to generate a close to optimal solution
to problem 1 with F given by (7).

Consider Go(z) ∈ RH2. Using (7) and (2) in the
functional subject to minimization in problem 1
(see (5)) we have that

J(Q−1(z)) =
p∑

i=1

∣∣∣∣
∣∣∣∣
[Q−1]ii(z)−Goii(z)

z − 1

∣∣∣∣
∣∣∣∣
2

2

(8)

The main idea behind the minimization of (8)
is to bring the diagonal terms of the inverse of
the Youla parameter as close as possible to the



diagonal terms of the process model. Considering
(8) it is clear that the choice

[Q−1]ii(z) = Goii(z) (9)

makes the functional equal to zero, but this would
lead to an improper or even unstable (whenever
the plant is non minimum (NMP) phase) Youla
parameter.

An interesting observation is that, even if Go(z)
is stable and minimum phase, if one modifies
slightly the choice (9) to make it proper, then
the resulting Youla parameter would be unstable.
This and other significant results are presented in
the following lemma:

Lemma 2. Assume that (8) has to be mini-
mized with Q−1(z) satisfying (2), and such that
[Q−1]ii(z) is either biproper or improper for i =
1, · · · , p.

(1) If Q−1(z) is chosen to be Q−1(z) = Go(z) +
εIp×p, ε ∈ R, then |ε| cannot be chosen arbi-
trarily small without making Q(z) unstable.

(2) If Q−1(z) = X(z) +
∑nz

l=0 Elz
l, where X(z)

is strictly proper and stable and El, l =
0, · · · , nz, are constant matrices, then

J(X(z) + Eo) ≤ J

(
X(z) +

nz∑

l=0

Elz
l

)
(10)

(3) Given Q−1(z) analytical for |z| = 1, then
always exists a stable and proper Q−1

st (z)
such that

J(Q−1
st (z)) ≤ J(Q−1(z)) (11)

Proof: Part 1 follows form a root locus argu-
mentation. Parts 2 and 3 follow from appropri-
ate use of the orthogonality of H2 and H⊥2 . See
(Silva, 2004) for details. 222

The previous lemma states that the search for
Qd

opt(z) should be restricted to those Youla pa-
rameters that are biproper and have a stable in-
verse.

Lemma 2 defines boundaries for the solution.
However, it is not possible to significatively mini-
mize the functional J , using standard H2 analytic
techniques. This motivates a conceptual reformu-
lation of the functional J as follows:

J̄(Q−1(z)) =
p∑

j=1

∣∣∣∣
∣∣∣∣
1−Goii(z)([Q−1]ii(z))−1

z − 1

∣∣∣∣
∣∣∣∣
2

2

(12)

This is justified in the fact that minimizing the
distance between A and B is conceptually equiva-
lent to minimize the distance between AB−1 and
the identity.

Under the additional assumption that the optimal
[Q−1]ii(z) are minimum phase, i.e. ([Q−1]ii(z))−1

is stable, it is possible to find closed forms for
the optimal [Q−1]ii(z) using Blashke products
and some additional considerations (Silva and
Salgado, 2005). Specifically, we have that

([Q−1]ii(z))opt∗(z) = ξi(z)Goii
(z) (13)

where ξi(z) is a scalar transfer function of the form

ξi(z) = zreld{Goii
(z)}

nzi∏

j=1

1− cij

1− c̄ij

1− zc̄ij

z − cij
(14)

where reld{X} denotes the relative degree of X,
z̄ the complex conjugate of z and {cij}j=1···nzi

denotes the set of non-minimum phase zeros of
Goii(z).

Note that we have added an asterisk as subscript
of the optimal values of [Q−1]ii(z) to emphasize
that the optimality is subjected to the assumption
that the optimal [Q−1]ii(z), i = 1, 2, ..., p, are
minimum phase. Also note that ξi(z) is such that
ξi(z)Goii

(z) is stable, minimum phase, biproper
and has the same DC gain as Goii(z).

Using the procedure sketched above, the Youla
parameter Qd

opt∗(z) is given by

Qd
opt∗(z) =

[
diag{([Q−1]ii(z))opt∗}+ Go(z)−Gd(z)

]−1

(15)

where Gd(z) = diag{Goii(z)}, and is such that
conceptually minimizes J . Note that the proper-
ties of ξi(z) imply that Qd

opt∗(z) is biproper and
has a stable inverse.

Lemma 3. Consider Go ∈ RH2 and the synthe-
sis procedure described previously. Then,

(1) Qd
opt∗(z) given in (15), defines a proper de-

centralized controller with infinite DC gain.
(2) The resulting control loop is internally sta-

ble if and only the image of the function
[det{Qd

opt∗(e
jω)}]−1, ω ∈ [−π, π], does not

encircle the origin.

Proof: Part 1 follows direct from the definitions.
Part 2 follows upon using the principle of the
argument.

For details see (Silva, 2004). 222

The previous result provides sufficient and neces-
sary conditions for decentralized stabilization for
the class of controllers defined by (15). However
there is no guarantee that the proposed procedure
yields a controller which satisfies that condition.
It can be shown (Silva, 2004) that if the process
model satisfies a kind of diagonal dominance con-
dition, the proposed procedure yields a stabilizing
Youla parameter.



4. EXAMPLES

This section presents examples to illustrate the
proposed synthesis procedure. In order to evaluate
the performance of the proposed controller, a
step change is applied in the reference and the
following index evaluated:

SQE =
∞∑

k=0

eT (k)e(k) (16)

where e(k) is the control error. The SQE of the
proposed loop is then compared with the mini-
mum achievable SQE in a full MIMO framework,
SQEopt, which is evaluated using the results re-
ported in (Silva and Salgado, 2005).

Example 1. (3× 3 process model). Consider a pro-
cess modelled by

Go(z) =




5k1
z7(5z−4) 0 4

z5(5z−4)

2.5
z6(5z−4)

20k2
5z−4

6
z4(5z−4)

0 2.5
5z−4

3k3
z4(5z−4)




where ki are constants. Let Go(k1,k2,k3) denote the
transfer matrices resulting from particular choices
for k1, k2, k3. Also the sum of the diagonal terms
of the PM in each case is denoted by D(k1,k2,k3).

After applying the methodology proposed in the
previous sections, the indexes SQE and SQEopt

were computed in each case considering r(k) =
1
3

[
2 −2 1

]T
µ(k) and the results, as well as the

sum of diagonal terms of the corresponding PM,
presented in table 1 (see (Salgado and Conley,
2004) for complete interpretation guidelines of the
PM).

Table 1. Sum of the diagonal terms
of the PM and performance indexes
SQE and SQEopt for each choice of the
parameters (k1, k2, k3) in example 1.

(k1, k2, k3) D SQE SQEopt

(1, 1, 2) 0.78 5.08 4.06
(1, 0.5, 1) 0.57 11.42 4.27

(0.5, 0.5, 1) 0.48 13.99 4.27
(0.5, 0.35, 1) 0.37 ∞ (unstable loop) 4.69

In the first three cases the polar plot of
[det{Qd

opt∗(z)}]−1 does not encircle the origin and,
therefore, the resulting closed loop is stable as
part 2 of lemma 3 guarantees. As an illustra-
tion, figure 1 shows the polar plot for the choice
(k1, k2, k3) = (1, 0.5, 1) and no encirclements of
the origin occur. In the fourth case, (k1, k2, k3) =
(0.5, 0.35, 1), the polar plot encircles 4 times the
origin which explains the instability of the result-
ing closed control loop in this case.

The results show that in those cases where the PM
suggests a diagonal control scheme (D(k1,k2,k3) >

0 50 100
−60

−40

−20

0

20

40

60

Real Axis

Im
ag

in
ar

y 
A

xi
s

−6 −4 −2 0
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

Real Axis

Im
ag

in
ar

y 
A

xi
s

(a) (b)

Fig. 1. (a) Polar plot of [det{Qd
opt∗(z)}−1 in the

case (k1, k2, k3) = (1, 0.5, 1); (b) detail.
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Fig. 2. Error evolution considering the proposed
controller (solid) and optimal full MIMO con-
troller (dashed). The reference is r(k) =
1
3 [2 − 2 1]T .

70%), the performance of the decentralized con-
trol scheme is not too distinct to the optimal cen-
tralized one. This is the case of Go(1,1,1) illustrated
in figure 2, where the evolution of the control error
is plotted for each channel considering both the
proposed controller and the full MIMO optimal
controller.

On the other hand, when the PM does not recom-
mend a decentralized control strategy (D(k1,k2,k3) <
40%), as in the case of Go(0.5,0.35,1) , the decen-
tralized loop that results applying the proposed
synthesis strategy may be unstable.

For relatively ambiguous PM diagonal
sums (D(k1,k2,k3) ∼ 50%), the proposed method-
ology achieves closed loop stability, but the per-
formance, as measured by SQE, is significantly
deteriorated in comparison with the centralized
optimum.



Example 2. (Unstable closed loop). Consider a pro-
cess having the transfer function

Go(z) =


 (z − 1/5)−1 z−3

z(z−1/2)

z−2 −2+z
(z−1/2)(z−3/5)


 .

In this case the proposed methodology leads to an
unstable decentralized closed loop, as predicted by
the polar plot of [det{Q−d

opt∗(z)}]−1, which in this
case encircles three times the origin.

The PM in this case is given by

φ =
[
0.0242 0.4553
0.0445 0.4760

]

which suggests that it is unwise to attempt a de-
centralized control strategy to control this plant.
Therefore, not surprisingly, the proposed strategy
in this example fails to stabilize the loop.

5. CONCLUSIONS

A synthesis procedure for a class of decentral-
ized controllers has been presented. The proposed
method allows to find, under certain conditions, a
stabilizing decentralized controller for open loop
stable plants. The main idea behind the results
is that a choice of a suitable cost function for a
H2 optimization procedure, leads to a significant
simplification of the problem and, at least, an
approximate optimum can be established.

As appreciated in the examples, the performance
deterioration of the proposed decentralized con-
trol loop compared to the best centralized one is
not as significant as one would suppose at fist
glance. This can be explained considering struc-
ture selection tools such as the PM, which help
to identify the interaction structure of the plant
and to establish whether a decentralized control
scheme is advisable.

Future work in this area should cover the unstable
plant case and the development of an analytical
procedure to guarantee the stability of the result-
ing control loop, without imposing too hard to
satisfy constraints such as diagonal dominance.
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