
ON IDENTIFICATION OF A FLEXIBLE MECHANICAL
SYSTEM USING DECIMATED DATA

Svante Gunnarsson 1
Department of Electrical Engineering, Linköping University,
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Abstract: System identification of a flexible mechanical system using decimated data is
studied. It is illustrated how the use of decimated data can give erroneous results due to
the inter-sample behavior of the signals, and an intuitive explanation to this phenomenon
is proposed. The possible improvement by using alternativeassumptions for the inter-
sample behavior is investigated.Copyrightc2005 IFAC.
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1. INTRODUCTION

The aim of this paper is to study identification of grey-
box (physically parameterized) models of continuous
time systems using discrete time data. Of particular
interest is to study the consequences of decimation of
the data before identification. This issue is of general
importance, but the presentation in this paper will em-
phasize identification of flexible mechanical systems.
There are several possible approaches to the grey-box
identification problem. One idea is to start by iden-
tifying a continuous time black-box model and then
compute the physical parameters from the coefficients
of the continuous-time. The first step can be done in
the time domain directly or via a frequency domain
model. Direct time domain identification of black-box
continuous time models using discrete time data has
been been studied extensively by several authors. See
(Unbehauen and Rao, 1998) for a thorough survey and
e.g. (Rao and Garnier, 2002) and (Garnieret al., 2003)
for recent contributions. An alternative method is to
first estimate the frequency response of the system
using some frequency domain method and then fit
a parametric frequency response curve to the initial
estimate. See e.g. (Pintelon and Schoukens, 2001)
and (Suthasunet al., 2003). Irrespectively of how the1 Supported by the Swedish Research Council.

continuous-time black-box model has been obtain, the
second step, i.e. to determine the physical parame-
ters from the coefficients of the black-box model, can
be very difficult, in particular for high order models.
Due to this difficulty this paper will primarily deal
with methods which aim at identifying the physical
parameters directly. Also here several alternatives ex-
ist. One possibility is to use a sequence of specially
designed experiments where individual or subsets of
the unknown parameters are estimated in each ex-
periment. See e.g. (Isakssonet al., 2003). Another
approach, which is the one that will be applied here,
is to estimate the parameters directly by using a time
domain prediction error approach. See e.g. (Östring
et al., 2003) and (N.R.Kristenssenet al., 2004) One
important application area is motion control systems
in general, see e.g. (Chouet al., 2003), and industrial
robots, see e.g. (Rostgaardet al., 2001), (Daniel-Berhe
and Unbehauen, 1997), in particular.

One important aspect of identification of continu-
ous time systems using discrete time data is how to
handle the inter-sample behavior of the data. In e.g.
(Schoukenset al., 1994) it is shown how the viola-
tion of the assumed inter-sample behavior may lead
to erroneous results. The problem is also treated in
(Anderssonet al., 1994). In some applications the
sampling interval used during the data collection is



determined by the hardware, and when the sampling
frequency appears to be unnecessarily high it is ap-
pealing to decimate the input and output signals to a
slower sampling rate. The example that will be dis-
cussed in Section 3 is a realistic description of the
movements around axis one of an industrial robot. The
sampling rate, determined by the robot control system,
is 2 kHz. In order to catch the low frequency behavior
of the system a data collection experiment of10� 20
seconds is desirable. This implies large data sets and,
especially for higher order models, heavy computa-
tions. From that reason decimation of data would be
useful.

The purpose of this paper is to illustrate and explain
some phenomena that can occur when system identi-
fication is carried out using decimated data. The phe-
nomena will be explained heuristically and the basic
observations are first illustrated in Section 2 using a
simple first order example. Using these observations
a two-mass flexible mechanical system is studied in
Section 3. Finally some conclusions are given in Sec-
tion 4.

2. FIRST ORDER SYSTEM

2.1 Problem description

Consider a linear continuous time system with inputu(t), outputy(t), and transfer functionG(s). Assume
that the input signal is applied to the continuous time
system using zero order hold. The relationship be-
tween the input and output signals, in the sampling
points, is given by the discrete time frequency re-
sponse functionGT (ei!T ). In general, for a given!
the frequency function will have larger negative phase
shift for largerT , due to the delay caused by the hold
function.

As an illustration consider a first order system with
transfer function G(s) = 100s+ 100 (1)

and assume that the input is a sinusoid with angular
frequency50 rad/s. The input is generated using two
different sampling intervals,T1 = 0:5 � 10�3 s andT2 = 5 � 10�3 s respectively. Figure 2.1 shows
the frequency functionsGT1(ei!T1 ) andGT2(ei!T2)
respectively. At! = 50 rad/s the phase difference
between the two frequency functions is approximately7Æ.
The continuous time system, equation (1), is simulated
using zero-order hold input and the sampling intervalsT1 andT2 respectively. Figures 2 and 3 show the input
and output signals, and the difference in phase shift is
clearly seen in Figure 3.
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Fig. 1. Discrete time frequency function of the system
given by equation (1). Solid:T = T1. Dashed:T = T2.
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Fig. 2. Input signal. Solid:T = T1. Dashed:T = T2
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Fig. 3. Output signal. Solid:T = T1. Dashed:T = T2
2.2 Black-box identification

Assume now that the signals from the simulation
using sampling intervalT1 (solid lines in Figures 2
and 3) are decimated by a factor ten. Since there are
no disturbances present the decimation can be done
by simply picking every tenth sample of the input
and output vectors. Using the decimated signals in
discrete time black-box identification implies that zero
order hold input is assumed, and for the input this
corresponds to the dashed curve in Figure 2. This
input signal is combined with the decimated version
of the solid curve in 3, and the resulting data set
is used for identification. For sampling intervalT2
the true discrete time transfer functionGT2 describes
the relationship between the dashed input in Figure
2 and dashed output signal in Figure 3. The system



identification, on the other hand, tries to find a model
that describes the relationship between the dashed
input in Figure 2 and the solid output in Figure 3. Due
to the phase difference between the solid and dashed
output signals the true input-output relationship will
not belong to the model class, and the resulting model
will be biased. The model fit can be characterized
by the bias integral presented in e.g.(Ljung, 1999).
Assume that the true relationship between the input
and output signal is given by the transfer operatorG0(q) and the model structure is given byG(q; �).
The asymptotic model, as the number of data tends
to infinity, is given by�� =argmin� Z �=T��=T j G0(ei!T )�G(ei!T ; �) j2��u(!)d! (2)

where�u(!) denotes the spectrum of the input signal.
The model fit will depend on the properties of the
excitation signal used for identification. Here the input
is a a single frequency sinusoid and it implies that the
identified model will have correct amplification and
phase shift at the frequency of the sinusoid. A first
order output error (OE) model is identified using the
decimated data set. Transforming back the estimated
model to continuous time results in the modelĜzoh(s) = 135s+ 143 (3)

i.e. a substantial error in both time constant and static
gain. The frequency functions of the true and esti-
mated models are shown in Figure 4. The model tries
to match the negative phase shift between the dashed
input and the solid output, which is less than for the
true transfer function for sampling intervalT2. It is
therefore natural that the pole of the model is moved
to higher frequency in order to match the phase shift.
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Fig. 4. Discrete time frequency functions. Solid: True
system forT = T1. Dashed: True system forT = T2. Dashed-dotted: Estimated model

2.3 Grey-box identification

An alternative to the approach used above above is to
use theidgrey model structure in the System Iden-
tification Tool-box, see (Ljung, 2000). The continuous
time model is defined as a state space model_x(t) =A(�)x(t) +Bu(t) +Ke(t) (4)y(t) =C(�)x(t) + e(t) (5)

and the matricesA(�); B(�); C(�), and K(�) are
specified in an m-file. The user of the tool-box can, by
using the appropriate options, control how the inter-
sample properties, specified in the data object, will
affect the identification. By specifying that the m-file
always delivers the continuous time system matrices
the inter-sample property determines if zero order hold
or first order hold is used when computing the dis-
crete time predictor. For the first order example this
gives that zero-order hold inter-sample behavior of
the decimated data set yields the same model as in
(3). First order hold character of the input will give
a better, but of course not perfect, description of the
input character. In this case the estimated continuous
time model is given byĜfoh(s) = 98s+ 97 (6)

The example illustrates that the assumption that the
decimated data set has zero order hold inter-sample
properties can give erroneous result due the phase
difference of the output at different sampling rates. It
also shows that the error will depend on the frequency
contents of the input signal. Considerably better re-
sults are obtained by identifying the continuous time
model directly and specifying first order hold input
character of the decimated data set. An alternative
approach would be to convert the discrete time black-
box model to continuous time using a first order hold
assumption.

3. TWO-MASS MECHANICAL SYSTEM

3.1 Problem description

Consider now a two-mass flexible mechanical system
shown in Figure 3.1u �; �m �aJm Jak; dr

f
Fig. 5. Two-mass model

HereJm andJa denote the moments of inertia of the
first and second mass respectively. The parametersk
andd denote the stiffness and damping of the spring



respectively, andf andr denote the viscous friction of
the first mass and the gear ratio respectively. Torque
balances of the two masses giveJm��m =�f _�m � rk(r�m � �a) (7)� rd(r _�m � _�a) + u
and Ja��a = k(r�m � �a) + d(r _�m � _�a) (8)

respectively. Considering the torque as input signal,
the angular velocity of the first mass as output signal,
and using the state variablesx1 = r�m � �a; x2 =_�m; x3 = _�a the equations (7) and (8) give_x = Ax+Bu y = Cx (9)

where A = 0BBB� 0 r �1� rkJm �f + r2dJm rdJmkJa drJa � dJa1CCCA (10)B = �0 1Jm 0�T C = �0 1 0� (11)

In the sequel the parameter values given in Table 1 will
be used. The gear ratior = 1=118 is known a priori.

Table 1. Nominal parameter values

Parameter Nominal valueJa 11k 1:5 � 105Jm 9 � 10�4fm 1 � 10�3d 10

The model defined by (10) and (11) and Table 1
represents a realistic description of the dynamics of
an industrial robot when moving around axis one. See
e.g. (Östringet al., 2001)

The transfer function of the system is given byG(s) = B(s)A(s) (12)

whereB(s) = Jas2 + ds+ k (13)A(s) = JaJms3 + s2(Jafm + d(Jm + r2Ja))+ s(k(Jm + r2Ja) + dfm) + kfm (14)

Assuming zero order hold the corresponding discrete
time transfer functions are computed, and the cor-
responding frequency functions are shown in Figure
6. The figure shows that the discrete time frequency
function corresponding toT = 5 � 10�3 has larger
negative phase shift.
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Fig. 6. Discrete time frequency function of the system
given by equation (12). Solid:T = T1. Dashed:T = T2.

3.2 Black-box identification

The input is chosen as a chirp signal, i.e. a sinusoid
where the frequency changes from10 to 80 Hz during
the experiment. The experiment lasts for10 seconds,
and the sampling interval is, like in the first order
case,T = T1 = 0:5 � 10�3 seconds. The continuous
time system is simulated using zero order hold input,
and the input and output signals are decimated by a
factor ten before the identification is carried out. A
third order output error model is identified, and the
resulting model is shown in Figure 7. It is clearly
seen that the identified model differs substantially
from true discrete time system. The notch frequency
is essentially lower for the identified model and the
phase curve has a different behavior.
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Fig. 7. Discrete time frequency functions. Solid: True
system forT = T1. Dashed: True system forT = T2. Dashed-dotted: Estimated model

The properties of the identified model are also re-
vealed by studying the Nyquist curves of the fre-
quency functions as shown in Figure 8. The figure
shows that the Nyquist curve of the estimated model,
with sampling intervalT2, follows the Nyquist curve
of the true frequency function corresponding theT1,



i.e. the shorter sampling interval. This is in agreement
with the observations from the first order example.
The identified model tries to model, within the fre-
quency range of the input, the relationship between
the input signal and the output signal corresponding to
the shorter sampling interval. See also the bias integral
(2). It has to be noted that the achieved model depends
on where the energy of the input is located.
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Fig. 8. Discrete time frequency functions. Solid: True
system forT = T1. Dashed: True system forT = T2. Dashed-dotted: Estimated model

An important property of the identified model is that
the zeros of the model are located outside the unit
circle, and when the discrete time model is converted
to continuous time the zeros are located in the right
half plane. The estimated numerator polynomial is
given byN(s) = 1:0 � 103s2 � 5:1 � 103s+ 1:3 � 106 (15)

A comparison of this polynomial and the numera-
tor B(s) of equation (12) shows that the estimated
dampingd is negative, which is a non-physical results.
The relationship between the zeros of continuous-
time systems and the discrete-time counterparts has
been studied in e.g. (Wahlberg, 1990) and (Åströmet
al., 1980), but these results provide limited insight into
this behavior.

3.3 Grey-box identification

The starting point is an m-file defining the structure
of the physically parameterized model. This structure
follows from the state space model given by (10) and
(11). In order to improve the behavior of the identifi-
cation procedure it has been found to useful to scale
the physical parameters such that they all are of the
same order of magnitude. The system is simulated for10 seconds, using zero order hold input and sampling
intervalT = T1. The input and output data vectors are
decimated by a factor ten. Using the decimated data
set two sets are defined. In the first set the inter-sample
behavior is set to be zero order hold and in the second
set it is set to be first order hold. The results from

identifications using these sets are presented in Ta-
ble 2 and Figure 9. The estimated frequency function
assuming first order hold input gives a considerably
better result. The estimated damping is positive and
the other parameters are fairly close to their nominal
values.
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Fig. 9. Continuous time frequency functions. Solid:
True system. Dashed: Estimated model assuming
first order hold input. Dash-dotted: Estimated
model assuming zero order hold input.

Table 2. Nominal parameter values and es-
timated parameter values for zero and first

order hold respectively

Par. Nom. value ZOH FOHJm 9 � 10�4 11 � 10�4 8:2 � 10�4k 1:5 � 105 1:9 � 105 1:3 � 105Ja 11 16 9.3fm 1 � 10�3 63 � 10�3 1:7 � 10�3d 10 -230 6.5

Figure 10 shows once more the phenomenon noted
above. The estimated model, assuming zero order
hold input, for the longer sampling interval tries to
match the true frequency function corresponding to
the shorter frequency interval within the frequency
range of the input.

4. CONCLUSIONS

The consequences of using decimated data for identi-
fication of continuous time systems have been inves-
tigated. It has been illustrated that decimation of the
data may lead to erroneous models and in some cases
models without physical interpretation. The errors are
caused by the violation of the assumption that the in-
put is piecewise constant during the sampling interval.
A possible interpretation of the behavior is that the
error is caused by the difference in phase shift of the
output signal for different sampling intervals. One way
to improve the results is to identify the continuous
time model directly and assume first order hold in-
put of the input signal. The results are illustrated by
identification of the physical parameters of a two-mass
flexible mechanical system.
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