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Abstract: In this paper, the discrete system which is described by difference
equations

xn+1 = fn(xn), fn(0) = 0, n = 0, 1, 2, . . . .

is considered. This system has the trivial (zero) solution xn = 0. Sufficient
conditions of its asymptotic stability are obtained in the cases when functions
fn(x) are almost periodic in n. Copyright c©2005 IFAC

Keywords: difference equations, stability, Lyapunov’s direct method

1. INTRODUCTION

Difference equations have been studied in various
branches of mathematics for a long time. First
results in qualitative theory of such systems were
obtained by Poincaré and Perron in the end of
nineteenth and the beginning of twentieth cen-
turies. The systematic description of the theory
of difference equations one can find in (Agar-
wal, 1992; Elaydi, 1996; Lakshmikantham & Tri-
giante, 1998). Difference equations are a conve-
nient model for discrete dynamic systems descrip-
tion and for mathematical simulation of systems
with impulse effect (Gladilina & Ignatyev, 2003;
Halanay & Wexler, 1971; Ignatyev, 2003; Laksh-
mikantham et. al., 1989; Samoilenko & Perestyuk,
1995). One of directions arising from applications
of difference equations is linked with qualitative
investigation of their solutions (stability, bound-
edness, controllability, observability, oscillation,
robustness...) (Abu-Saris et. al., 2002; Agarwal et.
al., 2003; Bacciotti & Biglio, 2001; Corduneanu,
1995; Győri et.al., 1991; Győri & Pituk, 2001;
Hooker et.al., 1987; Marzulli & Trigiante, 1995).

Consider the discrete system of the form

xn+1 = fn(xn), fn(0) = 0 (1.1)

where n = 0, 1, 2, ... is the discrete time, xn =
(x1

n, x2
n, ..., xp

n) ∈ R p, fn = (f1
n, f2

n, ..., fp
n) ∈ R p,

fn satisfy Lipschitz conditions uniformly in n :
‖fn(x)−fn(y)‖ ≤ Lr‖x−y‖ for ‖x‖ ≤ r, ‖y‖ ≤ r.
System (1.1) has the trivial (zero) solution

xn ≡ 0. (1.2)

Denote xn(n0, u) the solution of system (1.1) co-
inciding with u under n = n0. We also denote
Br = {x ∈ R p : ‖x‖ ≤ r}. Suppose functions
fn(x) to be defined in BH where H > 0 is some
fixed number. According to (Lakshmikantham &
Trigiante, 1998) we denote Z+ the set of nonneg-
ative integers.

The sufficient conditions of the stability of so-
lution (1.2) of system (1.1) are obtained in this
paper provided that sequences {fn(x)} are almost
periodic for all x ∈ BH .

2. MAIN DEFINITIONS AND
PRELIMINARIES

By analogy to ordinary differential equations
(Hahn, 1967; Rouche et. al., 1977; Savchenko &
Ignatyev, 1989), let us introduce the following
definitions.



Definition 2.1. Solution (1.2) of system (1.1)
is said to be stable if for any ε > 0, n0 ∈ Z+

there exists δ = δ(ε, n0) > 0 such that ‖xn0‖ ≤ δ
implies ‖xn‖ ≤ ε for each n > n0.

Definition 2.2. Solution (1.2) of system (1.1)
is called attractive if for every n0 ∈ Z+ there
exists η = η(n0) > 0 and for every ε > 0 and
xn0 ∈ Bη there exists σ = σ(ε, n0, xn0) ∈ N such
that ‖xn‖ < ε for any n ≥ n0 + σ. Here N is the
set of natural numbers.

In other words, solution (1.2) of system (1.1) is
attractive if

lim
n→∞

‖xn(n0, xn0)‖ = 0. (2.1)

for all n0 ∈ Z+, xn0 ∈ Bη.

Definition 2.3. The zero solution of system (1.1)
is called equiattractive if for every n0 ∈ Z+ there
exists η = η(n0) > 0, and for any ε > 0 there is
σ = σ(ε, n0) ∈ N such that ‖xn(n0, xn0)‖ < ε for
all xn0 ∈ Bη and n ≥ n0 + σ.

Definition 2.4. The trivial solution (1.2) of sys-
tem (1.1) is called:

– asymptotically stable if it is stable and attrac-
tive;

– equiasymptotically stable if it is stable and
equiattractive;

Definition 2.5. (Hahn, 1967; Rouche et.al., 1977)
Function r : R+ → R+ belongs to the class of
Hahn functions K (r ∈ K) if r is continuous
increasing function, and r(0) = 0.

Definition 2.6. A sequence {un}+∞−∞ is said to
be almost periodic if for every ε > 0 there exists
l = l(ε) ∈ N such that each segment [sl, (s +
1)l], s ∈ Z contains an integer m such that
‖un+m − un‖ < ε for all n ∈ Z. Here Z is the
set of integers. Numbers m with such properties
are called ε-almost periods of the sequence {un}.

Definition 2.7. A sequence of functions {fn(x)}
is called uniformly almost periodic if for every
ε > 0 there exists l = l(ε, r) ∈ N such that each
segment of the form [sl, (s + 1)l], s ∈ Z contains
an integer m such that ‖fn+m(x)−fn(x)‖ < ε for
all n ∈ Z, ‖x‖ < r.

A.Halanay and D.Wexler (Halanay & Wexler,
1971) proved the following theorems.

Theorem 2.1. Solution (1.2) of system (1.1)
is uniformly stable if there exists a sequence of
functions {Vn(x)}, with the next properties:

a(‖x‖) ≤ Vn(x) ≤ b(‖x‖), a ∈ K, b ∈ K, n ∈ Z+,
(2.2)

Vn(xn) ≥ Vn+1(xn+1) for every solution xn.
(2.3)

Theorem 2.2. Suppose that there exists a se-
quence of functions {Vn(x)}, with properties (2.2)
and

Vn+1(xn+1)− Vn(xn) ≤ −c(‖xn‖), c ∈ K, (2.4)

|Vn(x)− Vn(y)| ≤ L‖x− y‖,
n ∈ Z+, x ∈ BH , y ∈ BH , L > 0. (2.5)

Then the zero solution of system (1.1) is uni-
formly asymptotically stable.

In particular case, when system (1.1) is au-
tonomous, i.e. fn(x) = f(x), the following the-
orem is valid (Halanay & Wexler, 1971, p.34):

Theorem 2.3. If there exists a continuous func-
tion V (x) such that a(‖x‖) ≤ V (x) ≤ b(‖x‖), a ∈
K, b ∈ K, and

V (xn+1)− V (xn) ≤ 0 (2.6)

for every nonzero solution xn of system (1.1), and
equality sign in (2.6) holds in some set which does
not contain entire semitrajectories, then solution
(1.2) of system (1.1) is asymptotically stable.

The purpose of this paper is to obtain conditions
of asymptotic stability of solution (1.2) of system
(1.1) assuming that sequences {fn(x)} are almost
periodic.

3. STABILITY IN ALMOST PERIODIC
SYSTEMS

Definition 3.1. The sequence of numbers {uk}∞k=1

is called finally nonzero if for any natural number
M there exists k > M such that uk 6= 0.

Lemma 3.1. (Halanay & Wexler, 1971, p.125) Let
sequences {u1

n}, {u2
n}, ..., {uM

n } be almost periodic.
Then for every ε > 0 there exists l = l(ε) ∈
N such that each segment of the form [sl, (s +
1)l], s ∈ Z contains at least one ε-almost period,
common for all these sequences.

Lemma 3.2. If for every x ∈ BH , a sequence
{Fn(x)} is almost periodic, and each function
Fn(x) satisfies Lipschitz condition uniformly in
n ∈ Z, x ∈ BH , then this sequence is uniformly
almost periodic.

Proof. Functions Fn(x) satisfy Lipschitz condi-
tion, hence

‖Fn(x)− Fn(y)‖ ≤ L1‖x− y‖, (3.1)

where L1 is Lipschitz constant. Let ε be any posi-
tive number. BH is bounded and closed, therefore



it is a compact. It means that there exists a finite
set of points z1, ..., zM such that zj ∈ BH (j =
1, ...,M), and for any x ∈ BH there exists a
natural number i (1 ≤ i ≤ M) such that

‖x− zi‖ <
ε

3L1
. (3.2)

From Lemma 3.1 it follows that there exists l =
l(ε) ∈ N such that every segment [sl, (s+1)l], s ∈
Z contains a number m ∈ Z such that

‖Fn(zi)− Fn+m(zi)‖ <
ε

3
(3.3)

for all 1 ≤ i ≤ M, n ∈ Z.

Now let show that for every x ∈ BH , any integer
m satisfying inequality (3.3) is ε-almost period of
the sequence {Fn(x)}. Let zk be the same element
of the set z1, ..., zM , for which ‖x−zk‖ < ε/(3L1).
Then (3.1)-(3.3) imply

‖Fn+m(x)− Fn(x)‖ ≤ ‖Fn+m(x)− Fn+m(zk)‖

+‖Fn+m(zk)− Fn(zk)‖+ ‖Fn(zk)− Fn(x)‖

≤ ε

3
+ 2L1 ·

ε

3L1
= ε. (3.4)

Inequality (3.4) completes the proof of Lemma
3.2.

Theorem 3.1. Let a sequence of continuous func-
tions {Vn(x)} satisfy conditions

a(‖x‖) ≤ Vn(x), a ∈ K, x ∈ BH , Vn(0) = 0,
(3.5)

and for every n0 ∈ Z+ there exists ∆(n0) > 0
such that ‖xn0‖ < ∆ implies that the sequence
{Vn(xn(n0, xn0))} does not increase and tends to
zero. Then the zero solution of system (1.1) is
equiattractive.

Proof. Pick arbitrary δ = δ(n0) ∈ (0,∆). Ac-
cording to conditions of the theorem, for any
ε > 0, n0 ∈ Z+, and xn0 ∈ Bδ there exists
σ = σ(ε, n0, xn0) ∈ N such that

Vn0+σ(xn0+σ(n0, xn0)) <
1
2
ε.

Because of the continuity of functions Vn(x) and
continuous dependence of solutions on initial data,
there exists a neighbouhood Q(xn0) of the point
xn0 in which the inequality

Vn0+σ(xn0+σ(n0, y)) < ε for y ∈ Q(xn0) (3.6)

is valid. Since the sequence {Vn} monotonically
does not increase along solutions of system (1.1),
from (3.6) it follows Vn(xn(n0, y)) < ε for n ≥
n0 + σ(ε, n0, xn0), y ∈ Q(xn0) So the compact
set Bδ is covered by the system of neighbour-
hoods {Q(xn0)} from which, by Heine - Borel’s
Lemma, it is possible to select the finite sub-
covering Q1, ..., Qj with corresponding numbers
σ1, . . . , σj . Let σ(ε, n0) = max{σ1, . . . , σj} (σ de-
pends only on ε and n0). Then Vn(xn(n0, xn0)) <
ε for all n ≥ n0 + σ(ε, n0) if ‖xn0‖ ≤ δ(n0). This

inequality proves that solution (1.2) of system
(1.1) is equiattractive.

Later on throughout this section, we shall assume
that the sequence {fn(x)} in the right-hand side
of system (1.1) is almost periodic for every fixed
x ∈ BH , and functions fn(x) satisfy Lipschitz
condition uniformly in n.

Lemma 3.3. Consider the solution xn(n0, xn0) of
system (1.1). We suppose that xn(n0, xn0) belongs
to Br (0 < r < H) for n ≥ n0. Let {εk}
be a monotonically approaching zero sequence of
positive numbers, and {mk} a sequence of εk-
almost periods of {fn(x)} (for every εk there
corresponds an εk-almost period mk). Then the
limit relation

lim
k→∞

‖xn∗(n0, x
(k))− xn∗+mk

(n0, xn0)‖ = 0,

(3.7)
holds where x(k) = xn0+mk

(n0, xn0), and n∗ is a
fixed natural number which is more than n0 (n∗ >
n0).

Proof. Consider solutions

xn(n0, x
(k)) (3.8)

and
xn(n0 + mk, x(k)) (3.9)

of system (1.1). After ∆n = n∗ − n0 steps the
point x(k) passes to xn∗(n0, xn0) along solution
(3.8), and x(k) passes to the point xn∗+mk

(n0 +
mk, x(k)) = xn∗+mk

(n0, xn0) along solution (3.9).
Solution (3.9) of system (1.1) with initial con-
dition (n0 + mk, x(k)) can be interpreted as the
solution of the system

xn+1 = fn+mk
(xn) (3.10)

with initial data (n0, x
(k)). The sequence {fn(x)}

is almost periodic, and every function fn(x) sat-
isfies Lipschitz condition, hence right-hand sides
of (1.1) and (3.10) differ arbitrary small from
each other for k large enough. This implies limit
relation (3.7).

Theorem 3.2. Suppose that there exists a se-
quence of functions {Vn(x)} such that

a) for every fixed x ∈ BH , the sequence {Vn(x)}
is almost periodic;

b) each member Vn(x) satisfies condition (3.5)
and Lipschitz condition uniformly in n;

c) Vn(xn) ≥ Vn+1(xn+1) along any solution of
(1.1);

d) the sequence {Vn(xn)} is finally nonzero along
any nonzero solution of (1.1).

Then the zero solution of system (1.1) is equiasymp-
totically stable.



Proof. First let us show that solution (1.2) of
system (1.1) is stable. Pick arbitrary ε ∈ (0,H)
and n0 ∈ Z+. Let δ = δ(ε, n0) > 0 be such that
Vn0(x) < a(ε) for x ∈ Bδ. Then

a(‖xn‖) ≤ Vn(xn) ≤ Vn0(xn0) < a(ε)

whence we have ‖xn‖ < ε for n > n0.

Now let us show that solution (1.2) is equiat-
tractive. Take arbitrary xn0 ∈ Bδ. The se-
quence {Vn(xn(n0, xn0))} monotonically does not
increase, therefore there is the limit

lim
n→∞

Vn(xn(n0, xn0)) = η ≥ 0,

and Vn(xn(n0, xn0)) ≥ η for n ≥ n0. Let us show
that η = 0. Suppose the opposite: η > 0. Consider
a monotonically approaching zero sequence of
positive numbers {εk} where ε1 is sufficiently
small. By lemmas 3.2 and 3.1, for every εi there
exists a sequence of εi-almost periods mi,1,mi,2,
...,mi,k, . . . (mi,k < mi,k+1, limk→+∞mi,k =
+∞) for sequences {fn(x)} and {Vn(x)} such that
inequalities

|Vn+mi,k
(x)− Vn(x)| < εi,

‖fn+mi,k
(x)− fn(x)‖ < εi

hold for any n ∈ Z, x ∈ Bε. Without loss of
generality one can suppose mi,k < mi+1,k for all
i ∈ N , k ∈ N . Designate mk = mk,k.

Consider the sequence {x(k)} where x(k) =
xn0+mk

(n0, xn0) (k = 1, 2, ...). This sequence is
bounded, therefore there exists its subsequence
which converges to some point x∗. Without loss
of generality we suppose that the sequence {x(k)}
itself converges to x∗. The sequence {Vn(x)} is
almost periodic for every fixed x ∈ BH , and each
function Vn(x) is continuous, hence

Vn0(x∗) = lim
n→∞

Vn0(xn)

= lim
k→∞

lim
n→∞

Vn0+mk
(xn) = lim

n→∞
Vn0+mn

(xn)

= lim
n→∞

Vn0+mn
(xn0+mn

(n0, xn0)) = η.

Consider the sequence {xn(n0, x
∗)}. From condi-

tions of the theorem, it follows that there exists
n∗ > n0 (n∗ ∈ N ) such that the inequality

Vn∗(xn∗(n0, x
∗)) = η1 < η

holds. Functions fn(x) satisfy Lipschitz condition,
hence

lim
k→∞

‖xn∗(n0, x
(k))− xn∗(n0, x

∗)‖ = 0

because
lim

k→∞
‖x(k) − x∗‖ = 0.

This implies

lim
k→∞

Vn∗(xn∗(n0, x
(k))) = η1. (3.11)

The almost periodicity of the sequence {fn(x)}
and limit relation (3.7) imply

‖xn∗(n0, x
(k))− xn∗+mk

(n0, xn0)‖ ≤ γk (3.12)

where γk → 0 as k →∞. Since the sequence {Vn}
is almost periodic, we have

|Vn∗(x)− Vn∗+mk
(x)| < εk (3.13)

for every x ∈ BH , and conditions (3.11), (3.12)
imply

|Vn∗(xn∗+mk
(n0, xn0))− η1| < ξk (3.14)

where ξk → 0 as k →∞. From (3.13) it follows

|Vn∗(xn∗+mk
(n0, xn0))

−Vn∗+mk
(xn∗+mk

(n0, xn0))| < εk. (3.15)

Inequalities (3.14), (3.15) imply

|Vn∗+mk
(xn∗+mk

(n0, xn0))−η1| < ξk +εk (3.16)

where ξk + εk → 0 as k →∞.

On the other hand

lim
k→∞

Vn∗+mk
(xn∗+mk

(n0, xn0)) = η. (3.17)

Inequality (3.16) and limit relation (3.17) are
in contradiction to the inequality η1 < η. This
contradiction proves that η = 0, hence, according
to Theorem 3.1, we derive that solution (1.2) of
system (1.1) is equiasymptotically stable.

Theorem 3.3. Suppose that there exists a se-
quence of functions {Vn(x)} such that for every
x ∈ BH , the sequence {Vn(x)} is almost periodic,
and each function Vn(x) satisfies Lipschitz condi-
tion uniformly in n and next conditions:

|Vn(x)| ≤ b(‖x‖), b ∈ K, n ∈ Z+ for x ∈ BH ;

for any n ∈ Z+ and δ > 0 there is x ∈ Bδ such
that Vn(x) > 0;

Vn+1(xn+1) ≥ Vn(xn) along any solution xn;

Then solution (1.2) of system (1.1) is unstable.

Proof. Let ε ∈ (0,H) be an arbitrary number.
Take any n0 ∈ Z+ and sufficiently small δ > 0.
Choose x0 ∈ Bδ by such way that Vn0(xn0) > 0.
From conditions of the theorem, it follows that
there exists η > 0 such that |Vn(x)| < Vn0(xn0)
for every x ∈ Bη. Consider the sequence {Vn}
where Vn = Vn(xn(n0, xn0)). This sequence does
not decrease i.e. Vn(xn(n0, xn0)) ≥ Vn0(xn0) for
n ≥ n0. This means that ‖xn(n0, xn0)‖ ≥ η for
every n ≥ n0. Let us show that there is N0 ∈ N
(N0 > n0) such that ‖xN0(n0, xn0)‖ > ε. Assume
the opposite:

η ≤ ‖xn(n0, xn0)‖ ≤ ε (3.18)

for all n > n0. Using the conditions of the theorem
and inequality (3.18), we obtain the contradiction
by the same way as in the proof of Theorem 3.2.
We pass the literal repetition of these reason-
ings. The contradiction shows that the solution
xn(n0, xn0) leaves Bε. The proof is complete.



4. EXAMPLES

Example 4.1. Consider the system

xn+1 = −yn sin(
√

3n), yn+1 = xn sinn (4.1)

and the function Vn(xn, yn) = x2
n + y2

n.

Vn+1(xn+1, yn+1)− Vn(xn, yn)

= −(cos2 n) x2
n − (cos2

√
3n) y2

n. (4.2)

According to Corduneanu (Corduneanu, 1989)
for any sufficiently small ε > 0 there exists a
sequence n1, n2, ..., nk, ... → ∞ such that 0 <
cos2 nk < ε, 0 < cos2(

√
3nk) < ε (k =

1, 2, ...). This means that there is not a function
c ∈ K such that the left-hand side of (4.2)
satisfies inequality (2.4), so Theorem 2.2 cannot
be applied to this system. System (4.1) is not an
autonomous one, therefore Theorem 2.3 cannot be
applied to the study of the stability property of its
zero solution. But this system is almost periodic,
and right-hand side of (4.2) is negative for each
nonzero solution of system (4.1). Hence, according
to Theorem 3.2, the zero solution of system (4.1)
is equiasymptotically stable.

Example 4.2. Consider the system

xn+1 = Xn(xn, yn), yn+1 = Yn(xn, yn) (4.3)

where

Xn = yn − x2
nyn(2− sin2 n− cos2

√
2n),

Yn = xn + xny2
n(2− sin2 n− cos2

√
2n).

If we choose Vn(xn, yn) = x2
n + y2

n, then

Vn+1(xn+1, yn+1)− Vn(xn, yn)

= x2
ny2

n(x2
n + y2

n)(2− sin2 n− cos2
√

2n)2.

By Theorem 3.3, we can state that the zero
solution of system (4.3) is unstable.

5. CONCLUSION

In this paper, the discrete system which is de-
scribed by difference equations

xn+1 = fn(xn), fn(0) = 0, n = 0, 1, 2, . . . .

is considered. This system has the trivial (zero)
solution xn = 0. Sufficient conditions of its asymp-
totic stability are obtained in the cases when func-
tions fn(x) are almost periodic in n.
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