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1. INTRODUCTION ables or of the part of variables (Rumyantsev, 1957;
Rumyantsev and Oziraner, 1987; Savchenko and Ig-
Letx:= (x},%2,...,x5) € RS. Denotey := (y*,...,y') = natyev, 1989; Vorotnikov, 1998). But there are no stan-
... X)eR, z:=(Z&...,72" = (X*1,... %) dard methods of construction of Lyapunov functions
R™ (m+1=9), Iyl = [(Y)?+---+()J¥? |7l =  forgeneral systems, so for applications it is interesting
(224 -4+ (@Y, x| = (IVI?+ 121%)Y?, Ty = to obtain criteria of partial uniform asymptotic stabil-
{R¥'€||§I||:£yr|}g r}, Qr={zeRM: ||z <r}, Br ={xe ity by means of function¥ and — with more weak

properties. Such creteria were obtained in (Ignatyev,

Consider the system of ordinary differential equations 1999; Ignatyev, 1989; Ignatyev, 2002; Rumyantsev

dx and Oziraner, 1987). In these criteria, it was assumed
dt X(t,x) (2.2) thatV is y-positive definite,d—v <0, andd—v is noty-
wheret € R, =[0,) istime,X = (Xg,...,Xn) : Ry x negative definite. In this paper, the demand on function
My x R™" — RS FunctionsX(t,x) (i =1,...,s) are V is made weaker: it does not assumed tgpesitive
supposed to be continuous and satisfying conditionsdefinite, buty-component of every solution of system
that solutions of system (1.1) exist and unique in the (1.1), lying on the integral s&t(t,x) = 0, tends to zero
domainR; x 'y x R™ whereH > 0 is a constant; ast — oo.
X(t,0) = 0. Under these assumptions, system (1.1) has
the trivial solution

x=0. (1.2)

To investigate partial stability of solution (1.2) with 2. MAIN DEFINITIONS AND PRELIMINARIES
respect to variableg', ...,y researchers usually use

Lyapunov’s direct method. This method assumes theConsider system of ordinary differential equations
existence ofy-positive definite Lyapunov function (1.1). Letus introduce definitions and notations which
V(t,x) such that its derivativelV/dt along solutions ~ were used in (Grudo, 1983; Ignatyev, 1992; Ignatyev,
of system (1.1) is negative definite function of all vari- 1993; Rouchet al., 1977).



Definition 2.1. The seM of the spacét, x) is called to
be integral if for each poinftg, %) € M, the inclusion
(t,x(t)) € M,t > to holds wherex(t) = X(t,tg,X0) =
(y(t,to,Xo), 2(t,to,Xp)) is the solution of system (1.1)
with the initial conditionx(tp) = Xo.

LetM C R; x R®. Denote byMq the intersection oM
with hyperpland = g, and byp (x,Mg) — the distance
between poink and the sel.

By analogy with (Gaishun, 1999; Grudo, 1983; Rouche

etal, 1977), let us introduce next definitions.

Definition 2.2. Solution (1.2) of system (1.1) is called
to bey-stable with respect to integral ¢t if for any

€ > 0 andtp € Ry there existsy = d(¢,tp) > 0 such
that (to, Xo) € M, [|%o|| < & imply ||y(t,to,Xo)|| < € for

t >to.

Definition 2.3. If in last definition § can be chosen
independent df (i.e. d = 6(¢)), then solution (1.2) is
called uniformlyy-stable with respect til.

Definition 2.4. The zero solution of system (1.1) is
called to bey-attractive with respect to integral Jeit

if for any to € Ry there existsn = n(tp) > 0, and
for any e > 0 andxp € My, (', x R™) there exists
o = o(&,tg,X) > 0 such that|y(t,to,Xo)|| < € for all
t>th+o.

Definition 2.5. The trivial solution of equations (1.1)
is called to be uniformlyy-attractive with respect to
M if for somen > 0 and anye > O there exists
o = o(¢&) > 0 such that|y(t,to, X0)|| < € for all tg €
Ry, Xo € My N(MTy x RM) andt >t + o.

Definition 2.6. Solution (1.2) of system of ordinary
differential equations (1.1) is called to be:

— asymptoticallyy-stable with respect to integral Jdt
if it is y-stable with respect tM andy-attractive with
respect tdv,

— uniformly asymptoticallyy-stable with respect to
integral setM if it is uniformly y-stable with respect
to M and uniformlyy-attractive with respect til.

Definition 2.7. We shall say that functiog : Ry —
R, is Hahn function(g € %) if it is continuous,
monotonically increasing arg(0) = 0.

Definition 2.8. We shall say that every solution of
system (1.1) ig-bounded if for any; > 0 there exists
N > 0 such thaf|z(t,to, Xo)[| <Ny fort >to >0, X0 €
Be.

¢

DenoteX := (Y,Z) whereY € R, Z € R™. We suppose
Y to satisfy the condition

IY(tx) =Y (tx2) ]| < Lllys -y,

X1 = (Y1,21) € Th x Qn, X2 = (Y2,22) € T x Qn,
where the constamt, in general, depends dxh.

(2.1)

If X(t,to,x1) € Ty X QN, X(t,t0,%2) € My x Q, then

t
Y(t,to,x1) =y1+ /t Y (U Y(U,to,X), Z(Uto, X)) U
0

t
y(t,to,X2) ZY2+/I Y (u,y(u,to,X2), Z(u,tg, X2) )du,
0
||y(tathX1) 7y(tat0aX2)|| S HyliyZ”+
t
+/t Y (u,y(u,to,X1), (U, to, X1))
0

—Y(U7y(u,t0, XZ)’ Z(uat()a Xz)) Hdu
Gronwall-Bellman Lemma and inequality (2.1) imply

Hy(t,to,Xl) —y(t,to,Xz)H < 6eL(t7t0)> (2'2)
if [lyr—yzll < 0.

3. THEOREM ON THE UNIFORMY-STABILITY

Theorem 3.1.Let system (1.1) be such that its any
solution is z-bounded, and there exists a continuous
function Mt,x) : Ry x My x R™ — R such that:

i) V is periodic in t with periodv;
i) V(t,x) >0, V(t,0)=0;

iii) V does not increase along solutions of system
(1.1);

iv) solution (1.2) of system (1.1) is uniformly asymp-
totically y-stable with respect to integral set M where

M:={(t,x):teR., xely xR", V(t,x)=0}.

Then the zero solution of system (1.1) is uniformly y-
stable.

Proof. Denote
Sa):={(t,x) eR. x g x R™: V(t,x) =0},
S(o):={xelg xR™: V(t,x) = 0}.

We shall prove this theorem by contradiction: sup-
pose that solution (1.2) of system (1.1) is not uni-
formly y-stable. This means that there exists a pos-
itve number h and a sequence of initial condi-
tions {(ton,Xon) };_4 such thattgn > O, r!i_':rlo”XO”” =

0, ||y(ton+ T, ton, Xon)|| > hfor someT; > 0. Lete be

an arbitrary positive number satisfying the condition
4e < h. In view of assumption iv) of the theorem,
the trivial solution of system (1.1) is uniformly-
attractive with respect ttM. Hence for somey > 0
there existss = o(€) > 0 such thaf|y(t,to,Xo)|| < €

for all to € Ry, X0 € §,(n)NBy, t > to+ o. Later
on, we shall assume thatis such that the inequality
4¢ < n holds. Let number$, > 0 denote moments of
time, such that

[ly(ton + Tn, ton, Xon) || = 4€,
(3.1

|y(ton +t,ton, Xon) || < 4e for t<T.

In view of inequality (2.2), we deriv% linl, = +oco.
Consider a sequendé },,_; such that the inequalities

0<tn<Tn, GSTn_tn§Q7 (32)



are valid forn > ng € ./ where ./ is the set of Let us estimate now, and J; taking into account
natural numbersQ is a constant satisfying the con- estimates (2.2) and conditions (3.5).
dition Q > o (for instance, we can choo§g:= 20).

Consider also a sequente, }2_, which terms satisfy J2 = [[y(tox + Tic tow + b, X.)

the conditions —Y(tok + Tk, tok +tic, X(tok + ti, tok + tk — Ok, X« )) |
e [0,0),  Tnh=ton+th— Ph® (3.3) < |1y — Y(tok + i, tok -+t — S, x.) || €59
< |&|LheQ < €; (3.7)

wherep, € Z,. (Z; is the set of nonnegative integers).

Consider now a sequendgs} in the phase space J3 < € becausdt. + px@,x.) € S(4e) and Ty —tx >
where o(e).

Xn = X(ton + tn, ton, Xon) = (Yn, Zn)- (3.4) Note that estimate (3.7) was made under assumption

_ _ O > 0, but one can show analogously that it is also
By virtue of assumptions (3.1) and (3.2), one can con- 4 ,e ford, <O.

clude thaty, € "4 foranyn > ng € 4. The sequence
{z,} is bounded; 4 is bounded and closed set in Taking advantage of obtained estimates, we have
R, hence, the sequend&,} includes a subsequence, [IY(tok + Ti;tok, Xok) || < 3¢. But this is in contradiction
convergent to some elemente My x R™. Similarly, to assumption (3.1). Obtained contradiction proves
the Sequencefn} has a Subsequence which converges uniform y-Stabl“ty of the zero solution of equations
to 7, € [0,w]. Without loss of generality, we shall (1.1). The proofis complete.
assume that these sequences themself converge to cor-
responding elementg; — X, Th — T, asn — co,

4. THEOREM ON THE UNIFORM ASYMPTOTIC

Taking into account properties of functid®hand no-
. . Y-STABILITY
tations (3.3), (3.4), we obtain S
0 <V (T, %) = lim V(1n, %) Theorem 4.1.Let system (1.1) be such that its any so-
e lution is z-bounded and there exists a functioft,X)
= rI]im V (ton +th, Xn) such that:
= r!mov(tOn+tn7x(t0n+tn7t0naX0n)) i) Vis differentiable and bounded on R 'y x Q,

for everyA > 0;
< lim,V/(ton, Xon) = 0. ii) V is periodic in t with periodo;
ThereforeV (t,,x,) = 0, and(t,,x.) € S(4¢). Denote i) V(t,x) >0, V(t,0)=0;

k a natural number, such that conditions Y
e iv) d—g—c(V(t,x)), cex;
k>no, te>o(e), |8 <max{1,—e 2}, b .

Lh V) solution (1.2) of system (1.1) is uniformly asymptot-

vk — ye|| < ee QL (3.5) ically y-stable with respect to the integral set5.

hold whered, = to +tx — pk® — 7, = Tk — Ts. It is Then the zero solution of system (1.1) is uniformly

clear that we can choose suchecaus@, — 0, ||lyn— asymptotically y-stable.

Y« =0, th — oo for n — co. Proof. According to Theorem 3.1, solution (1.2) of

We have the estimate system (1.1) is uniformlyy-stable. In addition, any
solution of system (1.1) ig-bounded. Therefore for
[y (tok + Tics ok Xok) || < J1+J2+ 5 anyh>0 (h<H) there exist >0 andA > 0, such
where that||y(t,to, o) || < h, [|z(t,to,X0)[| < A for all
J1 = ||y (tok + Tis tok, Xok) — Y(tok + Tic, tok + tie, X ) [ XEB, WER:, =% (41)
Jo = [|y(tok + Tk, tok =+ tk, X«) Let us show now that the zero solution is uniformly

y-attractive. Pick arbitrarg (¢ < h). From uniform

—VY(tok + Tk, tok + 1tk — 8k, X« )|, o - ) .
Yltok+ T o+t = 5 %) | y-stability of the trivial solution of system (1.1) with

Js = ||y (tok + Tic, T + Pk, X ) | respect to integral s&h), it follows the existence of
= [|y(tok + Tk tok +tk — &k, X ) || - n > 0 such that
By virtue of uniqueness of solutiongtok + Tk, tok, Xok) = (V€ >0) (Jo1=01(§) > 0) (Vo €R})
t T, t e, X(t, ., t =Vy(t Tk, t
Y(tok + Tk, tok +ti, X(tok +t, tok, Xok)) = Y(tok + T tok + (W1 € Sy (M) (Vt = to+01) [ly(ttox0) || < €. (42)

tx,Xk), hence in view of (2.2) and (3.5) we get ) )
Without loss of generality, further we shall suppose

J1 = [|y(tok + Ti, tok + b, Xic) — Y(tok + Tic, tok + i, X ) | £ <1 < h. Using (4.2), we obtain

< [lys =yl €W < fly. —yi e <. (36) (302 = 01(£/3) > 0) (Vo € R;) (VX1 € §, (1))



(M2to+0r) Iyltlox) <5 (43
Inequality (2.2) implies that there exists
y=1y(e) = %se*'-‘h(s) >0 (4.4)
such thatp € R;, ||[Xo —Xa|| < yimply
[y(to+ 02,10,%0) ~ ylto + G fo, ) | < . (45)
Let us show that
fim p(x(t,t0,%0),S (1)) =0 (4.6)

is valid for every solutiorx(t,tp,Xo) satisfying con-
ditions (4.1), and limit relation (4.6) holds uniformly
with respect tdp € R+, Xo € By. First let us show that
there exists Hahn functicmsuch that

V(t;x(t;to,%0)) > a(p (X(t,to, %0), (1))-  (4.7)

Denotey(r) :=infV(t,x) for p(X,S(n))=r, te

[0, @], xe Ty x Q. y(r) is ascalar continuous func-
tion, such thaty(0) =0, y(r) > 0 forr > 0. Denote
a(r) continuous monotonically increasing function,
such thata(0) =0, a(r) < y(r) forO<r < n. ltis
clear that this function satisfies property (4.7). Let us
show now that

(Va>0) (3T =T(a)) (Vto € Ry) (VX0 € By)
(Mt >1t0+T) V(t,X(t,10,%0)) < . (4.8)

Denote sup V(t,x) := P. Let us estimate a time

te[0,0]
xel'r, XQZ

segment during which the inequali(t, x(t, to, X)) >
a holds. In this case
t .
V(t,x(t)) =V(to,x0) + [ Vdt<P—c(o)(t—to);
to
cla)(t—ty) <P-V(t,x(t) <P—q;
P-a
c(a)

t—1t <
P-—a
cla)

. Therefore (4.8) is valid ifT =

According to properties (4.8) and (4.7), we get that
limit relation (4.6) is true:

(Vy>0) (FTa=Tai(y) > 0) (Vo € Ry (VX0 € By)
(Vt >to+T1) p(X(t,t0,%0),S(n)) <7. (4.9

Chooseo,

0.(€) =Ti(e) + o2(€). Let us show that
Ily(to+ ox +t,to,%0)|| <€ forany toeR;,
X0 € B¢, t>0. (4.10)
From (4.9) it follows that
(Vto € R:) (VX0 € By) (31 € Spimy+t(1))

[IX(to+Ta+1,t0,%0) —x1)[| < ¥ (4.11)

wherey is chosen according to (4.4). From (4.11) and
(4.5) we obtain

Ily(to+ T+ o2+t,to+ T1 +t,X(to+ T1 +t,t0,%0))

€
—Y(to+Ti+ o2+t to+Ti+t,X1)|| < 3
This inequality can be rewritten in the next form
[y(to+ T1+ 02 +1,t0,X0)

)
—ylto+Ti+ o+t to+Ti+t,x1)| < 3 (4.12)
From (4.3) we get
£
lyto+Ti+ o2+t to+Ti+1t,x1)| < 3 (4.13)

From (4.12) and (4.13) it followdy(to + T1 + o2 +
t,to,Xo|| < 3€ <e.

Thus it has been proved that there exiéts 0, such
that for everye > O there exist®, = o.(¢) =Ti(e) +
o2(¢€), such that (4.10) is true. This means that the zero
solution of system (1.1) is uniformly-attractive, and

B¢ is its domain ofy-attraction. The proof is complete.

Remark. Note that the problem of stability with re-
spect to all variables by means of semidefinite Lya-
punov functions was studied in (Bulgakov and Kalitin,
1978; Kalitin, 1995; Kalitin, 2002; Kosov, 1986).

5. EXAMPLE

Consider the following system of ordinary differential
equations

dyr . . .
R G

whereY; = ey, —y3, Y, =y (1+4sirPz)sint —y, +
(e7ly> — ¥3)(1 + sirfz)sint + y; sin2zsint[sin(y; +
Y2) +2— 22 +y1(1+sirPz)cost, Z=sin(y1+Y2)+
72228,

dz

Yla (51)

and study the stability of its trivial solution
y1=0, y2=0, z=0 (5.2)

in variablesys,y,. System (5.1) has the integral $ét
given by the equality

y2 —y1(1+sirfz)sint = 0. (5.3)

Any solution of system (5.1) ig-bounded. To verify
this, it is sufficient to choose m@K(|[, 1} as aN,.

Let us take a Lyapunov function in the fowh= [y, —
y1(1+ sirz)sint]?. Its derivative along solutions of
system (5.1) is equal to

dv

a =
The first equation of system (5.1) has the form
dyr

dt
on the integral sé¥l. According to results of (Ignatyev,
1987), the zero solution of this equation is uniformly
asymptotically stable. The relation (5.3) implies that
solution (5.2) of system (5.1) is also uniformly asymp-
totically y,-stable with respect to integral séd.
Hence all conditions of Theorem 4.1 are satisfied for
system (5.1), and we can conclude that the zero so-
lution of equations (5.1) is uniformly asymptotically
y-stable.

—2[y2 — y1(1+sirfz)sint]? = —2V.

=yie (1+sirfz)sint —y;.



6. CONCLUSION University, Series in Mathematics and Mechanics
4, 9-16.
A nonautonomous system of ordinary differential Rumyantsev V.V., Oziraner A.S. (198 8tability and
equations is considered. This system has the zero solu-  stabilization with respect to part of variables

tion, and there exists a nonnegative Lyapunov function Nauka. Moscow.

which derivative is nonpositive. Theorems on the par- Savchenko A.Ya., Ignatyev A.O. (198%ome stabil-
tial uniform stability and partial uniform asymptotic ity problems of nonautonomous dynamic systems
stability are proved. Naukova Dumka. Kiev.

Vorotnikov V.I. (1998).Partial stability and contral
Birkhauser. New York.
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