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1. INTRODUCTION

Letx :=(x1,x2, . . . ,xs)∈Rs. Denotey :=(y1, . . . ,yl )=
(x1, . . . ,xl ) ∈ Rl , z := (z1, . . . ,zm) = (xl+1, . . . ,xs) ∈
Rm, (m+ l = s), ‖y‖= [(y1)2 + · · ·+(yl )2]1/2, ‖z‖=
[(z1)2 + · · ·+(zm)2]1/2, ‖x‖= (‖y‖2 +‖z‖2)1/2, Γr =
{y∈Rl : ‖y‖≤ r}, Ωr = {z∈Rm : ‖z‖≤ r}, Br = {x∈
Rs : ‖x‖ ≤ r}.

Consider the system of ordinary differential equations

dx
dt

= X(t,x) (1.1)

wheret ∈R+ = [0,∞) is time,X = (X1, . . . ,Xn) : R+×
ΓH ×Rm → Rs. FunctionsXi(t,x) (i = 1, ...,s) are
supposed to be continuous and satisfying conditions
that solutions of system (1.1) exist and unique in the
domain R+ × ΓH ×Rm where H > 0 is a constant;
X(t,0)≡ 0. Under these assumptions, system (1.1) has
the trivial solution

x = 0. (1.2)

To investigate partial stability of solution (1.2) with
respect to variablesy1, . . . ,yl , researchers usually use
Lyapunov’s direct method. This method assumes the
existence ofy-positive definite Lyapunov function
V(t,x) such that its derivativedV/dt along solutions
of system (1.1) is negative definite function of all vari-

ables or of the part of variables (Rumyantsev, 1957;
Rumyantsev and Oziraner, 1987; Savchenko and Ig-
natyev, 1989; Vorotnikov, 1998). But there are no stan-
dard methods of construction of Lyapunov functions
for general systems, so for applications it is interesting
to obtain criteria of partial uniform asymptotic stabil-

ity by means of functionsV and
dV
dt

with more weak

properties. Such creteria were obtained in (Ignatyev,
1999; Ignatyev, 1989; Ignatyev, 2002; Rumyantsev
and Oziraner, 1987). In these criteria, it was assumed

thatV is y-positive definite,
dV
dt

≤ 0, and
dV
dt

is noty-

negative definite. In this paper, the demand on function
V is made weaker: it does not assumed to bey-positive
definite, buty-component of every solution of system
(1.1), lying on the integral setV(t,x) = 0, tends to zero
ast → ∞.

2. MAIN DEFINITIONS AND PRELIMINARIES

Consider system of ordinary differential equations
(1.1). Let us introduce definitions and notations which
were used in (Grudo, 1983; Ignatyev, 1992; Ignatyev,
1993; Roucheet al., 1977).



Definition 2.1.The setM of the space(t,x) is called to
be integral if for each point(t0,x0) ∈M, the inclusion
(t,x(t)) ∈ M, t ≥ t0 holds wherex(t) = x(t, t0,x0) =
(y(t, t0,x0), z(t, t0,x0)) is the solution of system (1.1)
with the initial conditionx(t0) = x0.

Let M ⊂R+×Rs. Denote byMq the intersection ofM
with hyperplanet = q, and byρ(x,Mq) – the distance
between pointx and the setMq.

By analogy with (Gaishun, 1999; Grudo, 1983; Rouche
et al., 1977), let us introduce next definitions.

Definition 2.2.Solution (1.2) of system (1.1) is called
to bey-stable with respect to integral setM if for any
ε > 0 andt0 ∈ R+ there existsδ = δ (ε, t0) > 0 such
that(t0,x0) ∈ M,‖x0‖ < δ imply ‖y(t, t0,x0)‖ < ε for
t ≥ t0.

Definition 2.3. If in last definition δ can be chosen
independent oft0 (i.e.δ = δ (ε)), then solution (1.2) is
called uniformlyy-stable with respect toM.

Definition 2.4. The zero solution of system (1.1) is
called to bey-attractive with respect to integral setM
if for any t0 ∈ R+ there existsη = η(t0) > 0, and
for any ε > 0 andx0 ∈ Mt0

⋂
(Γη ×Rm) there exists

σ = σ(ε, t0,x0) > 0 such that‖y(t, t0,x0)‖ < ε for all
t ≥ t0 +σ .

Definition 2.5. The trivial solution of equations (1.1)
is called to be uniformlyy-attractive with respect to
M if for some η > 0 and anyε > 0 there exists
σ = σ(ε) > 0 such that‖y(t, t0,x0)‖ < ε for all t0 ∈
R+, x0 ∈Mt0

⋂
(Γη ×Rm) andt ≥ t0 +σ .

Definition 2.6. Solution (1.2) of system of ordinary
differential equations (1.1) is called to be:

– asymptoticallyy-stable with respect to integral setM
if it is y-stable with respect toM andy-attractive with
respect toM;

– uniformly asymptoticallyy-stable with respect to
integral setM if it is uniformly y-stable with respect
to M and uniformlyy-attractive with respect toM.

Definition 2.7. We shall say that functiong : R+ →
R+ is Hahn function(g ∈ K ) if it is continuous,
monotonically increasing andg(0) = 0.

Definition 2.8. We shall say that every solution of
system (1.1) isz-bounded if for anyζ > 0 there exists
Nζ > 0 such that‖z(t, t0,x0)‖≤Nζ for t ≥ t0≥ 0, x0∈
Bζ .

DenoteX := (Y,Z) whereY∈Rl , Z∈Rm. We suppose
Y to satisfy the condition

‖Y(t,x1)−Y(t,x2)‖ ≤ L‖y1−y2‖, (2.1)

x1 = (y1,z1) ∈ ΓH ×ΩN, x2 = (y2,z2) ∈ ΓH ×ΩN,
where the constantL, in general, depends onN.

If x(t, t0,x1) ∈ ΓH ×ΩN, x(t, t0,x2) ∈ ΓH ×ΩN, then

y(t, t0,x1) = y1 +
∫ t

t0
Y(u,y(u, t0,x1),z(u, t0,x1))du,

y(t, t0,x2) = y2 +
∫ t

t0
Y(u,y(u, t0,x2),z(u, t0,x2))du,

‖y(t, t0,x1)−y(t, t0,x2)‖ ≤ ‖y1−y2‖+

+
∫ t

t0
‖Y(u,y(u, t0,x1),z(u, t0,x1))

−Y(u,y(u, t0,x2),z(u, t0,x2))‖du.

Gronwall-Bellman Lemma and inequality (2.1) imply

‖y(t, t0,x1)−y(t, t0,x2)‖ ≤ δeL(t−t0), (2.2)

if ‖y1−y2‖ ≤ δ .

3. THEOREM ON THE UNIFORMY-STABILITY

Theorem 3.1.Let system (1.1) be such that its any
solution is z-bounded, and there exists a continuous
function V(t,x) : R+×ΓH ×Rm→ R such that:

i) V is periodic in t with periodω;

ii) V(t,x)≥ 0, V(t,0)≡ 0;

iii) V does not increase along solutions of system
(1.1);

iv) solution (1.2) of system (1.1) is uniformly asymp-
totically y-stable with respect to integral set M where

M := {(t,x) : t ∈ R+, x∈ ΓH ×Rm, V(t,x) = 0}.

Then the zero solution of system (1.1) is uniformly y-
stable.

Proof.Denote

S(α) := {(t,x) ∈ R+×Γα ×Rm : V(t,x) = 0},

St(α) := {x∈ Γα ×Rm : V(t,x) = 0}.

We shall prove this theorem by contradiction: sup-
pose that solution (1.2) of system (1.1) is not uni-
formly y-stable. This means that there exists a pos-
itive number h and a sequence of initial condi-
tions {(t0n,x0n)}∞

n=1 such thatt0n ≥ 0, lim
n→∞

‖x0n‖ =

0, ‖y(t0n+T∗
n , t0n,x0n)‖≥ h for someT∗

n > 0. Letε be
an arbitrary positive number satisfying the condition
4ε < h. In view of assumption iv) of the theorem,
the trivial solution of system (1.1) is uniformlyy-
attractive with respect toM. Hence for someη > 0
there existsσ = σ(ε) > 0 such that‖y(t, t0,x0)‖ < ε

for all t0 ∈ R+, x0 ∈ St0(η)
⋂

Bη , t ≥ t0 + σ . Later
on, we shall assume thatε is such that the inequality
4ε < η holds. Let numbersTn > 0 denote moments of
time, such that

‖y(t0n +Tn, t0n,x0n)‖= 4ε,

(3.1)
‖y(t0n + t, t0n,x0n)‖< 4ε for t < Tn.

In view of inequality (2.2), we derive lim
n→∞

Tn = +∞.

Consider a sequence{tn}∞
n=1 such that the inequalities

0 < tn < Tn, σ ≤ Tn− tn ≤Q, (3.2)



are valid for n ≥ n0 ∈ N where N is the set of
natural numbers,Q is a constant satisfying the con-
dition Q > σ (for instance, we can chooseQ := 2σ ).
Consider also a sequence{τn}∞

n=1 which terms satisfy
the conditions

τn ∈ [0,ω), τn = t0n + tn− pnω (3.3)

wherepn ∈ Z+ (Z+ is the set of nonnegative integers).

Consider now a sequence{xn} in the phase space
where

xn = x(t0n + tn, t0n,x0n) = (yn,zn). (3.4)

By virtue of assumptions (3.1) and (3.2), one can con-
clude thatyn ∈ Γ4ε for anyn≥ n0 ∈N . The sequence
{zn} is bounded;Γ4ε is bounded and closed set in
Rl , hence, the sequence{xn} includes a subsequence,
convergent to some elementx∗ ∈ Γ4ε ×Rm. Similarly,
the sequence{τn} has a subsequence which converges
to τ∗ ∈ [0,ω]. Without loss of generality, we shall
assume that these sequences themself converge to cor-
responding elements:xn → x∗, τn → τ∗ asn→ ∞.

Taking into account properties of functionV and no-
tations (3.3), (3.4), we obtain

0≤V(τ∗,x∗) = lim
n→∞

V(τn,xn)

= lim
n→∞

V(t0n + tn,xn)

= lim
n→∞

V(t0n + tn,x(t0n + tn, t0n,x0n))

≤ lim
n→∞

V(t0n,x0n) = 0.

ThereforeV(τ∗,x∗) = 0, and(τ∗,x∗) ∈ S(4ε). Denote
k a natural number, such that conditions

k≥ n0, tk ≥ σ(ε), |δk|< max
{

1,
ε

Lh
e−LQ}

,

‖yk−y∗‖< εe−QL, (3.5)

hold whereδk = t0k + tk − pkω − τ∗ = τk − τ∗. It is
clear that we can choose suchk becauseδn→ 0, ‖yn−
y∗‖→ 0, tn →+∞ for n→ ∞.

We have the estimate

‖y(t0k +Tk, t0k,x0k)‖ ≤ J1 +J2 +J3

where

J1 = ‖y(t0k +Tk, t0k,x0k)−y(t0k +Tk, t0k + tk,x∗)‖,

J2 = ‖y(t0k +Tk, t0k + tk,x∗)

−y(t0k +Tk, t0k + tk−δk,x∗)‖,

J3 = ‖y(t0k +Tk,τ∗+ pkω,x∗)‖

= ‖y(t0k +Tk, t0k + tk−δk,x∗)‖.
By virtue of uniqueness of solutions,y(t0k+Tk, t0k,x0k)=
y(t0k+Tk, t0k+tk,x(t0k+tk, t0k,x0k)) = y(t0k+Tk, t0k+
tk,xk), hence in view of (2.2) and (3.5) we get

J1 = ‖y(t0k +Tk, t0k + tk,xk)−y(t0k +Tk, t0k + tk,x∗)‖

≤ ‖y∗−yk‖e(Tk−tk)L ≤ ‖y∗−yk‖eQL < ε. (3.6)

Let us estimate nowJ2 and J3 taking into account
estimates (2.2) and conditions (3.5).

J2 = ‖y(t0k +Tk, t0k + tk,x∗)

−y(t0k +Tk, t0k + tk,x(t0k + tk, t0k + tk−δk,x∗))‖
≤ ‖y∗−y(t0k + tk, t0k + tk−δk,x∗)‖eLQ

≤ |δk|LheLQ < ε; (3.7)

J3 < ε because(τ∗ + pkω,x∗) ∈ S(4ε) andTk− tk ≥
σ(ε).

Note that estimate (3.7) was made under assumption
δk ≥ 0, but one can show analogously that it is also
true forδk ≤ 0.

Taking advantage of obtained estimates, we have
‖y(t0k +Tk, t0k,x0k)‖< 3ε. But this is in contradiction
to assumption (3.1). Obtained contradiction proves
uniform y-stability of the zero solution of equations
(1.1). The proof is complete.

4. THEOREM ON THE UNIFORM ASYMPTOTIC
Y-STABILITY

Theorem 4.1.Let system (1.1) be such that its any so-
lution is z-bounded and there exists a function V(t,x)
such that:

i) V is differentiable and bounded on R+×ΓH ×Ωλ

for everyλ > 0;

ii) V is periodic in t with periodω;

iii) V(t,x)≥ 0, V(t,0)≡ 0;

iv)
dV
dt

≤−c(V(t,x)), c∈K ;

v) solution (1.2) of system (1.1) is uniformly asymptot-
ically y-stable with respect to the integral set S(H).

Then the zero solution of system (1.1) is uniformly
asymptotically y-stable.

Proof. According to Theorem 3.1, solution (1.2) of
system (1.1) is uniformlyy-stable. In addition, any
solution of system (1.1) isz-bounded. Therefore for
anyh> 0 (h< H) there existζ > 0 andλ > 0, such
that‖y(t, t0,x0)‖< h, ‖z(t, t0,x0)‖< λ for all

x0 ∈ Bζ , t0 ∈ R+, t ≥ t0. (4.1)

Let us show now that the zero solution is uniformly
y-attractive. Pick arbitraryε (ε < h). From uniform
y-stability of the trivial solution of system (1.1) with
respect to integral setS(h), it follows the existence of
η > 0 such that

(∀ξ > 0) (∃σ1 = σ1(ξ ) > 0) (∀t0 ∈ R+)

(∀x1∈St0(η)) (∀t ≥ t0+σ1) ‖y(t, t0,x1)‖< ξ . (4.2)

Without loss of generality, further we shall suppose
ε < η < h. Using (4.2), we obtain(

∃σ2 = σ1(ε/3) > 0
)
(∀t0 ∈ R+) (∀x1 ∈ St0(η))



(∀t ≥ t0 +σ2) ‖y(t, t0,x1)‖<
ε

3
. (4.3)

Inequality (2.2) implies that there exists

γ = γ(ε) =
1
3

εe−Lσ2(ε) > 0 (4.4)

such thatt0 ∈ R+, ‖x0−x1‖< γ imply

‖y(t0 +σ2, t0,x0)−y(t0 +σ2, t0,x1)‖<
ε

3
. (4.5)

Let us show that

lim
t→∞

ρ(x(t, t0,x0),St(η)) = 0 (4.6)

is valid for every solutionx(t, t0,x0) satisfying con-
ditions (4.1), and limit relation (4.6) holds uniformly
with respect tot0 ∈R+, x0 ∈ Bζ . First let us show that
there exists Hahn functiona such that

V(t,x(t, t0,x0))≥ a(ρ(x(t, t0,x0),St(η)). (4.7)

Denoteψ(r) := infV(t,x) for ρ(x,St(η)) = r, t ∈
[0,ω], x∈ Γη ×Ωλ . ψ(r) is a scalar continuous func-
tion, such thatψ(0) = 0, ψ(r) > 0 for r > 0. Denote
a(r) continuous monotonically increasing function,
such thata(0) = 0, a(r) ≤ ψ(r) for 0 < r < η . It is
clear that this function satisfies property (4.7). Let us
show now that

(∀α > 0) (∃T = T(α)) (∀t0 ∈ R+) (∀x0 ∈ Bζ )

(∀t ≥ t0 +T) V(t,x(t, t0,x0)) < α. (4.8)

Denote sup
t∈[0,ω]

x∈Γη×Ω
λ

V(t,x) := P. Let us estimate a time

segment during which the inequalityV(t,x(t, t0,x0))≥
α holds. In this case

V(t,x(t)) = V(t0,x0)+
∫ t

t0
V̇dt≤ P−c(α)(t− t0);

c(α)(t− t0)≤ P−V(t,x(t))≤ P−α;

t − t0 ≤
P−α

c(α)
. Therefore (4.8) is valid ifT =

P−α

c(α)
.

According to properties (4.8) and (4.7), we get that
limit relation (4.6) is true:

(∀γ > 0) (∃T1 = T1(γ) > 0) (∀t0 ∈ R+) (∀x0 ∈ Bζ )

(∀t ≥ t0 +T1) ρ(x(t, t0,x0),St(η)) < γ. (4.9)

Chooseσ∗ = σ∗(ε) = T1(ε)+σ2(ε). Let us show that

‖y(t0 +σ∗+ t, t0,x0)‖< ε for any t0 ∈ R+,

x0 ∈ Bζ , t ≥ 0. (4.10)

From (4.9) it follows that

(∀t0 ∈ R+) (∀x0 ∈ Bζ ) (∃x1 ∈ St0+T1+t(η))

‖x(t0 +T1 + t, t0,x0)−x1)‖< γ (4.11)

whereγ is chosen according to (4.4). From (4.11) and
(4.5) we obtain

‖y(t0 +T1 +σ2 + t, t0 +T1 + t,x(t0 +T1 + t, t0,x0))

−y(t0 +T1 +σ2 + t, t0 +T1 + t,x1)‖<
ε

3
.

This inequality can be rewritten in the next form

‖y(t0 +T1 +σ2 + t, t0,x0)

−y(t0 +T1 +σ2 + t, t0 +T1 + t,x1)‖<
ε

3
. (4.12)

From (4.3) we get

‖y(t0 +T1 +σ2 + t, t0 +T1 + t,x1)‖<
ε

3
. (4.13)

From (4.12) and (4.13) it follows‖y(t0 + T1 + σ2 +
t, t0,x0‖< 2

3ε < ε.

Thus it has been proved that there existsζ > 0, such
that for everyε > 0 there existsσ∗ = σ∗(ε) = T1(ε)+
σ2(ε), such that (4.10) is true. This means that the zero
solution of system (1.1) is uniformlyy-attractive, and
Bζ is its domain ofy-attraction. The proof is complete.

Remark. Note that the problem of stability with re-
spect to all variables by means of semidefinite Lya-
punov functions was studied in (Bulgakov and Kalitin,
1978; Kalitin, 1995; Kalitin, 2002; Kosov, 1986).

5. EXAMPLE

Consider the following system of ordinary differential
equations

dy1

dt
= Y1,

dy2

dt
= Y2,

dz
dt

= Z (5.1)

whereY1 = e−ty2−y3
1, Y2 = y1(1+sin2z)sint−y2 +

(e−ty2 − y3
1)(1 + sin2z)sint + y1sin2zsint[sin(y1 +

y2)+z−2z3]+y1(1+sin2z)cost, Z = sin(y1+y2)+
z−2z3,

and study the stability of its trivial solution

y1 = 0, y2 = 0, z= 0 (5.2)

in variablesy1,y2. System (5.1) has the integral setM,
given by the equality

y2−y1(1+sin2z)sint = 0. (5.3)

Any solution of system (5.1) isz-bounded. To verify
this, it is sufficient to choose max{‖ζ‖,1} as aNζ .

Let us take a Lyapunov function in the formV = [y2−
y1(1+ sin2z)sint]2. Its derivative along solutions of
system (5.1) is equal to

dV
dt

=−2[y2−y1(1+sin2z)sint]2 =−2V.

The first equation of system (5.1) has the form

dy1

dt
= y1e−t(1+sin2z)sint−y3

1.

on the integral setM. According to results of (Ignatyev,
1987), the zero solution of this equation is uniformly
asymptotically stable. The relation (5.3) implies that
solution (5.2) of system (5.1) is also uniformly asymp-
totically y2-stable with respect to integral setM.
Hence all conditions of Theorem 4.1 are satisfied for
system (5.1), and we can conclude that the zero so-
lution of equations (5.1) is uniformly asymptotically
y-stable.



6. CONCLUSION

A nonautonomous system of ordinary differential
equations is considered. This system has the zero solu-
tion, and there exists a nonnegative Lyapunov function
which derivative is nonpositive. Theorems on the par-
tial uniform stability and partial uniform asymptotic
stability are proved.
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