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Abstract: A method is described for designing ternary perturbation signals to reduce the 
effects of both nonlinear distortion and noise in the identification of linear systems. This 
is achieved by suppressing harmonic multiples of 2 and 3 in the signals and optimizing 
three performance indices. Methods are given for designing primitive ternary signals to 
meet these criteria, and results are tabulated for signals with periods up to 78. It is then 
shown that these signals can be used to design pseudorandom ternary signals with longer 
periods that also meet the criteria. Results are tabulated for these signals and illustrated by 
an example. Copyright © 2005 IFAC 
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1.  INTRODUCTION 
 
In many identification experiments, it is required to 
identify the linear behaviour of a system in the 
presence of both nonlinear distortion and noise.  For 
such experiments, it is therefore desirable that the 
perturbation signals used are designed to minimize 
these effects.  In this paper, the design of ternary 
signals for this purpose is considered.  Although 
these are the simplest kind of multilevel signal, they 
have unique advantages that make them useful for 
linear system identification.  One advantage is that 
they are easily transduced to form a system input, 
making them particularly suitable for the 
identification of prototype systems.  Important 
measurements often need to be made on industrial 
plant at an early stage of development, when input 
actuation is primitive, and multilevel signals with a 
small number of levels are ideal for this.  Barker and 
Godfrey (1999) described an industrial application in 
which a prototype system for the stabilization of steel 
strip during galvanizing was identified by using 
electromagnets on each side of the strip.  By applying 
a voltage to either electromagnet, or to neither, a 
ternary perturbation signal was generated. 

Design criteria for ternary perturbation signals are 
developed in Section 2 of this paper, first for the 
reduction of nonlinear distortion, and then for the 
reduction of noise.  Methods for obtaining primitive 
ternary signals to satisfy these criteria are then 
developed in Section 3.  It is shown in Section 4 that 
most of these primitive signals may be used to 
generate pseudorandom ternary signals, thus creating 
a considerably larger collection of perturbation 
signals for the user.  An example of a typical 
application of these ternary perturbation signals is 
given in Section 5.  Data for immediate application 
of the results are provided in the form of design 
tables. 
 
 

2.  NONLINEAR DISTORTION AND NOISE 
 
Reduction of the effects of nonlinear distortion on the 
accuracy of identification of the linear component of 
a system is achieved by choosing a perturbation 
signal with appropriate characteristics.  The effects of 
distortion due to even-order nonlinearities may be 
completely eliminated by choosing an inverse-repeat 
perturbation signal, for which the period is even and 



even harmonics are zero (Godfrey, 1993).  For a 
signal u(i) with period N, the condition for this is 
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The effects of distortion due to odd-order 
nonlinearities cannot be eliminated, but they can be 
reduced by choosing an inverse-repeat perturbation 
signal for which the period is a multiple of 6 and 
harmonic multiples of 2 and 3 are zero, and the 
condition for this is 

For signals with the best possible performance, when 
both PIPS and EMIN are 100%, TF has its least 
possible value of 0.5, as compared with 1 for a single 
sine wave.  Ternary perturbation signals that satisfy  
Equations 1 and 2, and for which the value of TF is 
least for a given period N, are described as optimal 
ternary signals in this paper.          for all i     (2) u i u i N u i N( ) ( / ) ( / )+ + + + =3 2 3 0
 Only multilevel signals for which the nonzero levels 

are symmetrical about the zero level satisfy these 
conditions, and an example given by Barker, et al. 
(2004) shows how effective they are for reducing the 
effects of nonlinear distortion. 

 
3.  PRIMITIVE TERNARY SIGNALS 

 
The simplest multilevel signals that satisfy the 
conditions in Equations 1 and 2 are ternary signals, 
which normally have a higher PIPS than signals with 
more than three levels and are much easier to design.  
Equations 1 and 2 show that all the members in a 
period of the signal are defined by the members in 
any third of a period.  For signals that satisfy 
Equation 1, PIPS, EMIN and TF may be obtained 
from the members in any half of a period.  A direct 
method for signal design is therefore: 

 
Reduction of the effects of noise on the accuracy of 
identification of the linear component of a system is 
achieved by choosing a perturbation signal with high 
performance indices in both the time domain and the 
frequency domain.  The time domain index used here 
is PIPS, the Performance Index for Perturbation 
Signals, described by Godfrey, et al. (1999).  PIPS is 
independent of the signal mean and amplitude.  It is 
100% for signals with the best possible performance, 
which are binary signals with equal occurrences of 
the two levels, and less for other signals.  For signals 
that satisfy Equations 1 and 2, PIPS is given by 

1. Compute all permutations of the member values 
1, 0 and –1 for a third of a period. 

2. For each permutation compute the member values 
1, 0 and –1 for a half of a period. 

3. Compute PIPS, EMIN and TF for the signal. 
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           (3) 4. Tabulate signals for which PIPS and EMIN are 
highest and TF is lowest. 

Signals obtained by this method are the simplest 
examples of ternary signals that best satisfy all the 
criteria for reducing the effects of nonlinear 
distortion and noise.  They are therefore described as 
primitive ternary signals.  Primitive ternary signals 
with periods from 6 to 60 that have been obtained by 
this method are shown in the upper part of Table 1. 

The frequency domain index used here is EMIN, 
derived from the measure used by Kollár (1994) in 
the MATLAB Frequency Domain System 
Identification Toolbox.  EMIN is also independent of 
the signal mean and amplitude.  It is 100% for signals 
with the best possible performance, which in this 
case are signals with a uniform spectrum, and less for 
other signals.  For signals that satisfy Equations 1 
and 2, EMIN is given by 

 
An alternative method is to compute the primitive 
ternary signals as computer-optimized signals.  A 
development of the program multilev, described by 
McCormack, et al. (1995), is most suitable for this.  
The program multilev_new, described by Tan and 
Godfrey (2004), can be used to obtain signals for 
which TF is lowest and either PIPS or EMIN is 
highest.  With this method, the primitive ternary 
signals with periods 6 and 12 are the same as those in 
Table 1, and those with periods from 18 to 60 are the 
same as one of the pair of signals for each of these 
periods in Table 1.  An advantage of the method is 
that it can give optimal signals with periods greater 
than 60, which with the direct method requires long 
computational times.  It will always give a signal that 
is close to the optimum, but not necessarily the 
optimal signal.  Primitive ternary signals with periods 
from 66 to 78 that have been obtained by this method 
are shown in the lower part of Table 1.  Repeated 
computations indicate that these signals may be 
considered optimal.  For signals with periods greater 
than 78, a large number of repeated computations 
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where U(k) is the Discrete Fourier Transform (DFT) 
of u(i), defined as 
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For a multilevel signal, PIPS and EMIN cannot both 
be 100%, and the best compromise of performance is 
achieved when their product is maximised.  This 
minimises a further performance index TF, derived 
from the Time Factor used by Pintelon and 
Schoukens (2001).  Using a development similar to 
that in Godfrey, et al. (2003), TF is given by 



would be required to obtain signals that might be 
considered optimal. 
 
 

4.  PSEUDORANDOM TERNARY SIGNALS 
 
The results in Table 1 are useful for applications 
where ternary signals with relatively short periods 
can be used.  The number of effective harmonics is a 
sixth of the signal period, so even with a period of 78 
the frequency response of a system can be obtained at 
only 13 frequencies.  Although adequate for adaptive 
control schemes, this is unlikely to be sufficient for 
detailed characterization of the system dynamics.  In 
the industrial application described by Barker and 
Godfrey (1999), for example, a signal with a period 
of 6858 was needed to provide sufficient data to 
identify a system with twenty significant mechanical 
resonances. 
 
Fortunately there is a method for using nearly all of 
the primitive ternary signals in Table 1 to obtain 
ternary signals with the same properties but much 
longer periods.  The method can be used when the 
primitive ternary signal period is one less than a 
prime, or a power of a prime, and for this reason, 
from among the signals with periods from 6 to 78 in 
Table 1, only those with period 54 cannot be used.  
The remaining signals are all primitive 
pseudorandom ternary signals, as described by 
Barker (2004), for each of which the period N is 
related to a Galois field GF(q) by . 1−= qN
 
A Galois field GF(q) has q field elements that may be 
represented either by the integers 1...3210 −q , or 
through the powers of a primitive field element g as 
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which the characteristic polynomial  is 
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As shown by Zierler (1959), if  is a primitive 

polynomial, for which  is a primitive field 
element, then  is a maximum-length sequence 
in GF(q) with the greatest possible period 
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In a period of a maximum-length sequence , 

each field element occurs  times, except for the 

element 0, which occurs  times.  When 
, a primitive maximum-length sequence  

is generated, with period  and characteristic 
polynomial .  A period of  is 

therefore , where  is a 

primitive field element, so each field element occurs 
once, except for the element 0, which does not occur. 
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A pseudorandom signal  is generated from 

the maximum-length sequence  by converting 

the field elements  into the signal 

levels .  Although 
the field elements are by definition distinct, it is not 
necessary that the signal levels are also distinct, and 
if they are restricted to 1, 0 and –1 then a ternary 
pseudorandom signal is generated.  The field element 
conversions define properties that are the same for all 
pseudorandom signals u  generated from 

, including the primitive pseudorandom 

signals u  generated from .  Therefore 
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The conversions  of the 
nonzero field elements are therefore obtained from a 
period of the primitive pseudorandom signal u .  
The conversion  of the zero field element must 
be zero if the pseudorandom signal u  is to 
satisfy Equations 1 and 2 when n , so 

u u u u( ) ( ) ( ) ... ( )1 2g g gq−

u( )0
)(, inq

> 1 u(

)(1, iq

)0 0= .  
For example, from Table 1 a primitive pseudorandom 
signal from GF(7) is 1 1 0 –1 –1 0, and a primitive 
element of GF(7) is 3, so from Equation 10 u( )1 1= , 
u( )3 1= , u( )2 0= , u( )6 1= − u( )4 1= − u(, , )5 0= .  
Together with u( )0 0= , these define the conversions 
of all the field elements for which all pseudorandom 
signals  from GF(7) have the same properties 

as the primitive pseudorandom signal . 
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Table 2 shows the field element conversions, 
obtained from the primitive pseudorandom signals 

 in Table 1, for all pseudorandom ternary 

signals  from GF(7) to GF(79).  The EMIN 

values for  are invariant as n increases, but 
the PIPS values decrease as n increases, because the 
proportion of  values in a period of u  
increases.  As n becomes large, PIPS approaches its 
minimum value of [(  times its value for 

, and this is the value shown in Table 2.  As n 
becomes large, TF approaches its maximum value of 
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−1  times its value for u , and this is the 
value shown in Table 2.  By comparing the PIPS and 
TF values in Tables 1 and 2, it can be seen that the 
decrease in PIPS and the increase in TF as n 
increases are only small.  The software GALOIS, 
described by Barker (2001), has facilities for 
obtaining all maximum-length sequences in GF(q) 
for 

)(i1,q

q ≤ 128 , and for entering the field element 



conversions that generate pseudorandom signals from 
them.  Although there is no theoretical limit to the 
periods of u  that can be obtained by increasing 
n, periods of up to 7000, with from 1 to over 1000 
effective harmonics, are sufficient for most practical 
purposes.  The periods of all signals obtainable from 
Table 1 that are less than 7000 are: 

)(, inq

u t( ) .= + 0 6
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The results obtained are excellent due to the well-
designed spectrum of the perturbation signal, which 
has harmonic multiples of 2 and 3 suppressed. 
 
 

6.  CONCLUSIONS 
 
Ternary perturbation signals are particularly suitable 
for the identification of linear systems in the presence 
of both nonlinear distortion and noise.  They are the 
simplest form of signal for which harmonic multiples 
of 2 and 3 can be suppressed, thus allowing the 
effects of even-order nonlinearities to be completely 
eliminated, and the effects of odd-order nonlinearities 
to be reduced.  For signals designed to have these 
characteristics, the effects of noise may be reduced 
by maximizing the time domain performance index 
PIPS and the frequency domain performance index 
EMIN.  As PIPS and EMIN cannot both be 100% for 
a ternary signal, the best performance is obtained 
when their product is maximized, as this minimizes a 
third performance index TF. 

 
6  12  18  24  30  36  42  48  54  60  66  72  78 
168  342   360   624   960   1368   1848   2196 
2400   3720   4488   5328   6240   6858 

 
 

5.  EXAMPLE 
 
The example given here is a typical application of the 
ternary perturbation signals designed using the data 
in Tables 1 and 2, which is the identification of the 
linear component of a system that contains 
nonlinearities.  The nature of the nonlinearities does 
not affect either the signal design or the identification 
method used, and in this case the nonlinearities are in 
the Hammerstein form.  With the system input signal 
u(t) applied to the part of the system that contains the 
nonlinearities, an intermediate inaccessible signal v(t) 
is generated that is given by 

 
Two methods for designing primitive ternary signals 
to meet these criteria have been described.  The first 
is a direct method that gives definitive results for 
signals with periods up to 60.  The second is a 
computer-optimized method that gives additional 
results for signals with periods up to 78.  These 
results have been tabulated for design purposes.  It 
has then been shown that these primitive ternary 
signals can be used to design pseudorandom ternary 
signals with much longer periods, thus providing a 
much larger set of perturbation signals.  These results 
have also been tabulated for pseudorandom ternary 
signals from Galois fields up to GF(79). 

           (11) v t u t u t u t( ) ( ) . ( ) . ( )+ +0 2 012 3 4

This signal is then the input to the linear part of the 

system with transfer function 1
5 1s +

, generating the 

system output signal y(t).  The 5s time constant is to 
be identified from the digital signals u(i) and y(i), 
sampled from u(t) and y(t) at a rate of 1 Hz. 
 
Several pseudorandom ternary signals from Table 2 
are suitable choices for the perturbation signal u(t) in 
this case.  The chosen signal is generated from a 
maximum-length sequence  in GF(31), with 

characteristic polynomial  and 

period .  Table 2 gives the field 
element conversions for which the resulting 
pseudorandom ternary signal  is optimal, and 
these conversions are used in this case to generate a 
signal for which PIPS is 80.4 %, EMIN is 89.4 % and 
TF is 0.97. 
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An example has been given that shows how effective 
these signals are for reducing the effects of nonlinear 
distortion and noise in the identification of linear 
systems. 
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 Fig.  1  Half periods of signals and their discrete Fourier transforms used in the Example 



Table 1 Primitive ternary signals with harmonic multiples of 2 and 3 suppressed 
 

 

Period 
N 

PIPS 
% 

EMIN 
% TF First half of primitive ternary signal.  Second half is inverse of first half 

6 81.6 100 0.75  + + 0 
12 81.6 100 0.75  + + 0 + – 0 
18 81.6 70.0 1.53  + + 0 0 0 + – – + 
18 47.1 100 2.25  + 0 0 + 0 0 0 0 0 
24 70.7 100 1.00  + + 0 0 + 0 + 0 0 – + 0 
24 81.6 80.4 1.16  + + + 0 + 0 0 + 0 – – + 
30 73.0 100 0.94  + + + 0 0 0 + 0 0 + – 0 – 0 + 
30 81.6 89.4 0.94  + + + 0 0 0 + 0 + + – 0 – + + 
36 81.6 78.3 1.22  + + + + 0 – + 0 + 0 + 0 0 – 0 – + + 
36 47.1 100 2.25  + 0 0 + 0 0 0 0 0 + 0 0 – 0 0 0 0 0 
42 81.6 92.6 0.88  + + + 0 0 + 0 0 + 0 – + + + – 0 – – + 0 + 
42 61.7 100 1.31  + + 0 0 0 0 0 + 0 + 0 0 + 0 0 – + 0 0 + 0 
48 76.4 100 0.86  + + + 0 + 0 0 – + + 0 + 0 0 + 0 0 0 – + – 0 + + 
48 81.6 84.4 1.05  + + + 0 0 0 0 0 + 0+ + – + + + 0 – 0 + – + + + 
54 81.6 86.6 1.00  + + + + + 0 – + – + 0 0 + + – – + 0 0 – – 0 0 – 0 0 + 
54 27.2 100 6.75  + 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
60 81.6 94.9 0.83  + + + 0 – + 0 – 0 – + 0 0 – 0 0 + 0 – – 0 – – – + – + + – 0 
60 51.6 100 1.88  + 0 0 0 0 0 0 0 + 0 + 0 + 0 – 0 0 0 + 0 0 0 + 0 – 0 0 0 0 0 
66 81.6 90.9 0.91  + + + + 0 0 0 + – – – + 0 + 0 – + – 0 0 0 – 0 – 0 – – + – – + + 0 
72 81.6 88.0 0.97  + + + + 0 – + + – 0 + 0 0 0 0 0 + 0 + + – + 0 + – – – – + + 0 0 0 + – + 
78 81.6 96.1 0.81  + + 0 + – 0 + + 0 + – 0 – + 0 – + 0 + + 0 – + 0 – – 0 – – 0 + + 0 – – 0 + – 0

 
Table 2 Field element conversions for pseudorandom ternary signals 

 
Field 
GF(q) 

Period 
N 

PIPS 
Min % 

EMIN
% 

TF 
Max Conversions u(0), u(1), . . . , u(q–1) of field elements 0, 1, . . . , q–1 

7 7n–1 75.6 100 0.87  0 + 0 + – 0 – 
13 13n–1 78.4 100 0.81  0 + + – 0 – 0 0 + 0 + – – 
19 19n–1 79.5 70.0 1.62  0 + + 0 0 + – – 0 + – 0 + + – 0 0 – – 
19 19n–1 45.9 100 2.37  0 + 0 0 0 0 0 0 + 0 0 – 0 0 0 0 0 0 – 
25 25n–1 69.3 100 1.04  0 + – + – + 0 + 0 0 0 0 0 + – 0 + – 0 0 – 0 0 – 0 
25 25n–1 80.0 80.4 1.21  0 + 0 0 – + 0 + 0 0 – + + + + + – – – – – 0 0 – 0 
31 31n–1 71.8 100 0.97  0 + – + 0 0 + 0 – + + 0 0 0 0 – + 0 0 0 0 – – + 0 – 0 0 – + – 
31 31n–1 80.3 89.4 0.97  0 + – + 0 0 + – – + + – 0 0 0 – + 0 0 0 + – – + + – 0 0 – + – 
37 37n–1 80.5 78.3 1.26  0 + + – + + 0 0 + + – 0 – 0 + – 0 0 + – 0 0 + – 0 + 0 + – – 0 0 – – + – – 
37 37n–1 46.5 100 2.31  0 + 0 0 0 0 – 0 + 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 – 0 + 0 0 0 0 – 

 0 + 0 + + 0 0 + – + – 0 + – + – 0 + – 0 + 0 43 43n–1 80.7 92.6 0.90 → 0 – 0 + – 0 + – + – 0 + – + – 0 0 – – 0 – 
 0 + 0 + + 0 – 0 0 0 0 – 0 0 0 0 0 0 0 + – + 43 43n–1 61.0 100 1.34 
→ – + – 0 0 0 0 0 0 0 + 0 0 0 0 + 0 – – 0 – 
 0 + – 0 0 + – + – 0 0 0 + – – – + 0 0 + + 0 + + 0 49 49n–1 75.6 100 0.88 
→ 0 – 0 0 0 + 0 0 – – + – – 0 0 – + – + – 0 0 0 + 
 0 + – 0 0 + – + 0 + 0 0 0 – 0 – + + 0 0 + + + + + 49 49n–1 80.8 84.4 1.07 
→ – – + – – + + – – – 0 – 0 0 – – + – + 0 0 0 – 0 
 0 + + 0 + – – + 0 0 – 0 0 – 0 – – 0 – + + + + – – 0 0 – + – 0 61 61n–1 81.0 94.9 0.85 
→ 0 + – + 0 0 + + – – – – + 0 + + 0 + 0 0 + 0 0 – + + – 0 – – 
 0 + 0 0 0 + 0 0 0 + 0 0 + – 0 0 0 0 0 0 – 0 0 0 0 + 0 + 0 0 0 61 61n–1 51.2 100 1.91 → 0 0 0 – 0 – 0 0 0 0 + 0 0 0 0 0 0 + – 0 0 – 0 0 0 – 0 0 0 – 
 0 + + 0 + – – – + 0 + + + 0 0 + 0 – + – – + – – + + 0 0 – – 0 0 0 0 67 67n–1 81.0 90.9 0.92 → 0 0 0 0 + + 0 0 – – + + – + + – + 0 – 0 0 – – – 0 – + + + – 0 – – 
 0 + – + + + 0 + – 0 0 – 0 – + + 0 + – + 0 – + – 0 + 0 + 0 + 0 0 0 + + – + 73 73n–1 81.1 88.0 0.98 
→ – + – – 0 0 0 – 0 – 0 – 0 + – + 0 – + – 0 – – + 0 + 0 0 + – 0 – – – + – 
 0 + – + 0 0 0 0 – 0 + 0 + – – + + – + 0 – + + 0 + – 0 + – 0 + 0 0 – – – – + + 079 79n–1 81.1 96.1 0.82 
→ 0 – – + + + + 0 0 – 0 + – 0 + – 0 – – + 0 – + – – + + – 0 – 0 + 0 0 0 0 – + –


	Period

