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Abstract: The paper proposed a new adaptive control system containing a Recurrent 
Neural Network (RNN) identifier, a Sliding Mode (SM) controller, and an integral term. 
The SM control is derived defining the sliding surface with respect to the output tracking 
error. The state and parameter information to resolve the SM control is obtained from a 
RNN identifier, which permits the SM control to maintain the sliding regime when the 
plant parameters changed. The simulation results obtained with a continuous stirred tank 
reactor plant model confirmed the good quality of the control. Copyright © 2005 IFAC. 
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1. INTRODUCTION 

 
The Sliding Mode Control (SMC) raised a great fame 
in the last decade. The theory basis of such control in 
continuous time cases, is given in the fundamental 
book of Utkin, see (Utkin, 1992). The main 
definitions for the Discrete-Time Sliding Mode 
Control (DTSMC), are given by Utkin, see (Utkin, 
1993; Utkin, 1998), and the designed control is 
bounded in an admissible domain. In (Korondi, et al., 
1995), the DTSMC has been applied for two-mass 
mechanical system where a full order observer is 
used to estimate the necessary state variables. To 
reduce the load plant perturbations, a PI-control 
action is added to the DTSMC. In (Fujisaki, et al., 
1994), it is proposed to use the discrete-time sliding 
mode to control multi-input, multi-output plants, 
where a stability analysis of the closed loop system is 
done. In more recent publications, see (Efe, et al., 
2001), a SMC is used for weight update of Radial 
Basis Function Neural Network adaptive controller 
of inverted pendulum system. This idea is first 
proposed by Sira-Ramirez, see (Sira-Ramirez and 

Colina-Morales, 1995), who updated the weights of 
an Adaline feedforward neural network by means of 
a SMC. In (Da, 2000) it is proposed a new type of 
SMC - Fuzzy-Neural Networks (FNN) SMC, which 
is developed for a class of large-scale systems with 
unknown bounds of high-order interconnections and 
disturbances. The author here proposed to eliminate 
the chattering caused by the discontinuous sign 
control function using a continuous output of the 
FNN to replace it. In some other publications like 
(Utkin, 1993), the chattering is eliminated 
substituting the sign function by saturation or dead-
zone one, see (Fujisaki, et al., 1994). In (Cao, et al., 
1994), a SMC of nonlinear systems is proposed using 
Neural Networks (NN). Here the NN of perceptron 
type is used to determine the sliding surface function 
and the control input. The chattering is eliminated 
using a sigmoid activation function instead of sign 
one. In (Liu and Handroos, 1999) the SMC is applied 
for a class of hydraulic position servo where good 
experimental results are obtained. The desired 
trajectory is defined by a two order reference model, 
the SMC is designed via Lyapunov function, and the 

mailto:baruch@ctrl.cinvestav.mx


     

saturation function is used instead of the sign 
function, so to reduce the degree of chattering. In 
(Ocheriah, 1997), a robust SMC is obtained for a 
class of uncertain dynamic delay systems. The SMC 
is designed by means of coordinate transformation 
and Lyapunov function, which guarantees uniform 
ultimate boundedness of all motions. In (Yoo and 
Ham, 1998), an adaptive fuzzy SMC of nonlinear 
systems is proposed. The unknown state and input 
nonlinearities are estimated by a fuzzy logic system 
and two Lyapunov function based design methods 
are given. In (Ha, 1996), a robust SMC with fuzzy 
tuning is proposed. The control action is adapted by 
means of fuzzy system so to compensate the 
influence of unmodelled dynamics and chattering. In 
(Misawa, 1997) a DTSMC for nonlinear systems 
with unmatched state and control uncertainties is 
proposed. The designed saturation function generates 
the necessary robust boundary layer which is used 
also to smooth the chattering. Finally, the paper of 
(Young, et al., 1999) represents a practical 
engineer’s guide to SMC for both continuous and 
discrete-time cases. The main problem of the SMC is 
that the sliding surface is defined with respect to the 
state error - see (Da, 2000; Yoo, et al., 1998), and not 
to the output error, so all state variables are to be 
known. Also the systems noise, uncertainties and 
chattering have to be overcame, see (Young, et al., 
1999).  
 
The present paper proposes to define the sliding 
surface with respect to the output tracking error, and 
to use a nonlinear plant identification and state 
estimation Recurrent Neural Network (RNN), see 
(Baruch, et al., 2002), which gives all the necessary 
state and parameter information to resolve the SMC. 
Furthermore, the adaptive abilities of the RNN 
permitted the SMC to maintain the sliding regime 
when the plant parameters changed. In order to 
overcome load plant perturbations, it is proposed to 
add an I-term to the control law. 
 
The paper is organized as follows: part 2 give a short 
description of the RNN topology and learning; part 3 
gives the block structure of the control and derive the 
sliding mode control algorithm; part 4 describes the 
aerobic stirred tank reactor nonlinear bioprocess 
plant model and gives graphical simulation results; 
part 5 represents the concluding remarks. 
 
 

2. RECURRENT NEURAL NETWORK 
TOPOLOGY AND LEARNING 

 
In (Baruch, et al., 2001; Nava, et al., 2004) a 
discrete-time model of Recurrent Trainable Neural 
Network (RTNN) and a dynamic Backpropagation 
(BP) weight updating rule, are given. The RTNN 
model is described by the following equations: 
 

X(k+1) = AX(k)+BU(k) 
Z(k)=θ[X(k)] 

Y(k) = θ[CZ(k)] 
A = block-diag (Ai); ⏐Ai⏐< 0 

(1)
(2)
(3)
(4)

 
Where: X(k) is an N - state vector of the RNN; U(k) 

is a M - input vector; Y(k) is a L - output vector; Z(k) 
is an N – dimensional output vector of the hidden 
layer; θ(.) is a vector-valued activation function with 
appropriate dimension; A is an (NxN) weight state 
diagonal matrix; Ai are elements of A; B and C are 
weight input and output matrices with appropriate 
dimensions and block structure, corresponding to the 
block structure of A. As it can be seen, the given 
RTNN model is a completely parallel parametric one, 
so it is useful for identification and control purposes. 
The stability, controllability, and observability of this 
model are discussed and proved in (Baruch, et al. 
2002; Nava, et al. 2004). Parameters of that model 
are the matrices A, B, C and the state vector X(k). 
The equation (4) is a stability preserving condition. 
The general BP-learning algorithm is given as:  

 
Wij(k+1)=Wij(k)+η∆Wij(k)+α∆Wij(k-1) (5)

 
Where: Wij (C, A, B) is the ij-th weight element of 
each weight matrix (given in parenthesis) of the 
RTNN model to be updated; ∆Wij (∆Cij , ∆Aij, ∆Bij) 
is the ij-th weight correction of Wij of each weight 
matrix (given in parenthesis); η, α are learning rate 
parameters. The weight updates ∆Cij , ∆Aij, ∆Bij of 
the model weights Cij , Aij, Bij , are given by: 

 
∆Cij(k) = [Tj(k) -Yj(k)] θj’(Yj(k)) Zi(k) 

∆Jij(k) = R1 Xi(k-1) 
R1 = Ci(k) [T(k)-Y(k)] θj’(Zj(k)) 

∆Bij(k) = R1 Ui(k) 

(6)
(7)
(8)
(9)

 
Where: T is a target vector and [T-Y] is an output 
error vector, both with dimension L; R1 is an 
auxiliary variable; θ’(x) is the derivative of the 
activation function, which for the hyperbolic tangent 
is θj’(x) = 1-x2. The application of this RTNN model 
requires the target vector T normalization. 
 
 

3. DESIGN OF AN ADAPTIVE SMC SYSTEM 
WITH NEURAL IDENTIFIER AND I-ACTION 

 
Let us suppose that the studied nonlinear plant is 
Bounded – Input – Bounded - Output (BIBO) stable 
one, given by the equations: 

 
Xp(k+1)=F[ Xp(k),U(k),Of(k) ] 

Yp(k)=ϕ [ Xp(k) ] 
(10)
(11)

 
Where Xp(k), Yp(k), U(k), Of(k) are plant state, 
output, input and offset vector variables with 
dimensions Np, L, M, where L=M is supposed; F and 
ϕ are smooth, odd, bounded nonlinear functions. The 
offset variable Of(k) is introduced in the input of the 
plant and represents all load changes and 
imperfections of the plant model. The block diagram 
of the control scheme is shown on Fig.1. It contains 
identification and state estimation RTNN, an indirect 
adaptive sliding mode controller and an I-term The 
stable nonlinear plant is identified by a RTNN with 
topology, given by equations (1) to (4) which is 
learned by the stable BP-learning algorithm, given by 
equations (5) to (9), where the identification error 
Ei(k) = Yp(k) – Y(k) tends to zero (Ei →0, k → ∞). 

 



 
 
Fig.1. Block-diagram of the adaptive SMC system, 

with a neural identifier and an I - action. 
 
This identification error could be considered 
acceptable if it reached a value below of 2% and it is 
considered as part of the offset. The linearization of 
the activation functions of the learned identification 
RTNN model, which approximates the plant (see 
equations. (1) to (3)), leads to the following linear 
local plant model: 
 

X(k+1) = AX(k) + B[U(k) + Of(k)] 
Y(k) = CX(k) 

(12)
(13)

 
The systems control U(k) have two parts: 
 

U(k) = U*(k) + Ui(k) (14)
 

Where: U*(k) is the dynamic compensation control 
part, based on SMC; Ui(k) is the I-term control part, 
which is: 
 

Ui(k+1) = Ui(k) + T0 Ki Ec(k) (15)
 
Where: T0 is a period of discretization; Ki is a 
diagonal (LxL) I-term gain matrix.  
 
Let us define the following sliding surface with 
respect to the output tracking error: 

 
   P 

S(k+1)=E(k+1)+∑ γi E(k-i+1);  |γi | < 1  
                                    i=1 

 
(16)

 
Where: S(.) is the sliding surface error function; E(.) 
is the systems output tracking error; γi  are 
parameters of the desired error function; P is the 
order of the error function. The additional inequality 
in (16) is a stability condition, required for the 
sliding surface error function. The output tracking 
error is defined as: 

 
E(k) = R(k) − Y(k) (17)

 
Where R(k) is a L-dimensional reference vector and 
Y(k) is an output vector with the same dimension. 
The objective of the sliding mode control systems 
design is to find a control action which maintains the 
systems error on the sliding surface which assures 
that the output tracking error reaches zero in P steps, 
where P<N. So, the control objective is fulfilled if: 
 

S(k+1) = 0 (18)
 
The iteration of the error (17) gives: 
 

E(k+1) = R(k+1) − Y(k+1) (19)
 

Now, from (12) and (13), it is easy to obtain the 
input/output local plant model which is: 
 

Y(k+1) = CX(k+1) = C[AX(k) + BU(k)] (20)
 

From (16), (18), and (19), we could obtain: 
 

         P 
R(k+1) – Y(k+1) + ∑ γi E(k-i+1) = 0  

                                   i=1 
(21)

 
The substitution of (20) in (21) gives: 

 
     P 

R(k+1)–CAX(k)–CBU(k)+∑ γi E(k-i+1)=0 
    i=1 

(22)

 
As the local approximation plant model (12), (13), is 
controllable, observable and stable, see (Baruch, et 
al., 2002; Nava, et al., 2004), the matrix A is 
diagonal, and L=M, than the matrix product (CB) is 
non-singular, and the plant states X(k) are smooth  
non-increasing functions. Now, from (22) it is 
possible to obtain the equivalent control capable to 
lead the system to the sliding surface which yields: 
 

                P 
Ueq(k)=(CB)-1[–CAX(k)+R(k+1)+∑ γi
                i=1 

 E(k-i+1)] (23)

 
Following (Young, et al., 1999), the SMC avoiding 
chattering is taken using a saturation function inside 
a bounded control level Uo, taking into account plant 
uncertainties. So the SMC part takes the form: 

 
              ⎧ Ueq(k),                     if ||Ueq(k)|| < Uo 
U*(k) = ⎨           
              ⎩-Uo Ueq(k)/||Ueq(k)||, if ||Ueq(k)|| ≥ Uo.

(24)

 
The proposed SMC copes with the characteristics of 
the wide class of plant model reduction neural 
control with reference model, defined in (Narendra 
and Parthasarathy, 1990), and it represents an 
indirect adaptive neural control, given in (Baruch, et 
al., 2001). As the aerobic bioprocess plant is a 
second order dynamical process, than we could 
accept P=1. In order to study the stability of the 
closed loop control system, let us accept Uo=1, and 
linearize the saturation function (24), supposing its 
gain to be equal to one. Then the SMC part yields: 

 
U*(k)=(CB)-1 [− CAX(k)+R(k+1)+ γ Ec(k)]  (25)

 
Where γ is a (LxL) diagonal control gain matrix. The 
identification and control errors Ei(k), Ec(k), are: 
 

Ei(k) = Yp(k) − Y(k); Ec(k) = R(k) − Yp(k) (26) 
 
The RTNN identifier is proved to be convergent, see 
(Baruch, et al., 2002). So the RTNN output tends to 
the plant output (Y(k) → Yp(k)), and the control error 
is in fact the tracking error, Ec(k)=E(k)=R(k)–Y(k). 

     



The substitution of the control component U*(k), 
given by (25), in (14), and then – the obtained 
control signal U(k) - in the linear model (20), give 
us, after some mathematical manipulations, an 
expression for the error dynamics:  
 

Ec(k+1) = − γ Ec(k) − (CB)Ui(k) − (CB)Of(k) (27)
 
The equations (15) and (27) could be rewritten in 
operators form and the closed-loop systems error 
dynamics could be derived as: 
 

Ui(z) = (z-1)-1T0 Ki Ec(z) 
(zI + γ) Ec = − (CB) Ui(z) − (CB) Of(z) 

[(z-1)(zI + γ) + T0 (CB) Ki] Ec(z) = 
= − (z-1) (CB) Of(z) 

(28)
(29)

(30)
 
As it could be seen from the equation (30), the 
closed-loop systems stability could be assured by an 
appropriate choice of the diagonal gain matrices γ 
and Ki, , respectively. It could be seen also that the 
effect of the I-term on the control error resulted in 
the introduction of a difference on the offset which 
reduces substantially that error, especially for 
constant offset, and accelerates the RTNN learning. 
 
 
4. MATHEMATICAL MODEL OF THE AEROBIC 

BIOPROCESS AND SIMULATION RESULTS 
 
This model, taken form the paper of (see Georgieva, 
et al., 2001 for more details), is given in the form: 
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Where the state variables are: 

)(tS  Substrate concentration  (glucose) in the 
reactor;  

)(tx  Biomass concentration (yeast) in the 
reactor; 

)(tC  Concentration of the dissolved in the 
reactor; 

2CO

)(tE  Ethanol concentration in the reactor; 
)(tO  Dissolved oxygen concentration in the 

reactor. 
 
The other variables and constants are: 
 

)(tD  Dilution rate considered as input; 
0>ijc  Stoichiometric (or yield) coefficients 

corresponding to the production of 
one unit of biomass (i.e. yeast) in 
each reactor;  

inS  Glucose concentration in the feed; 

*O  Equilibrium concentration of 
the dissolved oxygen;. 

Lak  Oxygen mass transfer constant; 

)(2 tCCOk  Gaseous outflow rate proportional 
to .  

2CO

)(tC
 
The main objective is to keep the glucose 
concentration close to the reference values using the 
dilution rate as manipulating function, where 
the input must be bounded. The process of yeast 
growth on glucose with ethanol production is 
described by three metabolic reactions. The first one 
is the reaction rate of the respiratory growth on 
glucose whose specific growth rate is: 

)(tD
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Where: 

max,sq  Maximal specific uptake rate of the 
glucose;  

max,cq  Maximal specific uptake rate of the 
oxygen; 

Ks  Saturation parameters for the 
glucose uptake;  

Kc  Saturation parameters for the 
oxygen uptake; 

1
111
−= cOca  Stoichiometric coefficient of the 

oxygen. 
 
The reaction rate of the respiratory growth on ethanol 
and the specific growth rate is: 
 

oO
O

KiS
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EKe
EeEOS

β
µ

µ
+

⋅
+

⋅
+

= max,),,(2  (33) 
 
Where: 

max,eµ  Maximal specific ethanol growth rate;  

Ki  Inhibition parameter (free glucose 
inhibits ethanol uptake); 

Ke  Saturation parameter for growth on 
ethanol;  

oβ  Saturation parameter for the free 
respiratory capacity available. 

 
Finally, the reaction rate of the fermentative growth 
on glucose and the specific growth rate is:  
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Since the growth capacity of a population of micro 
organisms is strongly limited, the specific growth 
rate is bounded. The upper bounds are: 
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The biochemical aerobic fermentation process 
model, given by equations (31) to (37), together with 
the parameters and the initial condition values of the 
variables, taken from the paper of (Georgieva, et al., 
2001), are used for simulation, adding a 10% 
(dmax=0.005 [g/l]) white measurement noise to the 
plant output and 10% (Of=0.02) offset to the plant 
input. The plant output is normalized in the 
range (-1, 1) of the output of the neural identifier 
RTNN, , so to form the identification error 

. The topology and learning parameters of the 
neural identifier RTNN are: (1, 5, 1), 

)(kpy

)(ˆ kpy

)(kei
1.0=η , 

01.0=α , and the control parameter is γ = 0.9. For 
sake of RTNN learning, the initial system 
identification is performed in closed-loop, computing 
the control  by the λ-tracking method, see 
(Georgieva, et al., 2001), which is as follows: 
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(38) 

 
Where: ym (0) = 0.05, umax = 0.0385, λ= 0.0025, δ=45 
and r=1. The period of discretization is chosen equal 
to , which means that it is equivalent to 1 
hour of the time of the real process. After the initial 
RTNN learning completion, the control is changed 
by that, issued by a sum of SMC and the I-term 
control. The gain of the I-term is chosen as Ki=0.09. 
The graphical simulation results obtained applying a 
SMC with I-term, are given on Fig.2 a-d. For sake of 
comparison, in the Fig. 3 a-d, and Fig. 4 a-d, are 
given the same results applying a SMC without I-
term, and a λ - tracking method of control. 

01.0=To

 

 
 
Fig.2. Graphical results of the SMC with I- term for 

different periods of time and different scales of 
amplitude (comparison of the reference signal and 
the output of the plant). 

The Fig. 5 shows some additional results of the SMC 
with I-term. 
 

 
 
Fig.3. Graphical results of the SMC without I- term 

for different periods of time and different scales of 
amplitude (comparison of the reference signal and 
the output of the plant). 

 

 
 
Fig.4. Graphical results of the λ-tracking method of 

control for different periods of time and different 
scales of amplitude (comparison of the reference 
signal and the output of the plant). The application 
of this control does not need a RNN identifier. 

 

 
 
Fig.5. Additional graphical results of the SMC with 

I- term; a) comparison of the output of the 
identification RTNN and the output of the plant; 
b) instantaneous error of control; c) instantaneous 
error of identification; d) MSE% of control; e) 
control signal; f) States of the identification 
RTNN used for control. 

     



     

 
The graphics (Fig. 2, 3, 4, a-d) compare the set point 
reference (Sref=0.05 [g/l]) with the output of the 
plant for different times of the process evolution and 
different scales of amplitude. The MSE% of control 
(Fig. 5, d) at the end of the process (24 hours) 
reached the value of 2.36 %. The MSE% of plants 
identification obtained is 0.136%. The control signal, 
the instantaneous error of identification and control, 
and the systems states, used for systems control are 
shown also in the figure Fig. 5, d-h. For sake of 
comparison, in the Fig. 3, a-d, and Fig. 4, a-d, are 
given the graphical simulation results applying a 
proportional SMC and a λ-tracking method of 
control. The results obtained with the proportional 
SMC and the λ-tracking method of control (Fig. 3, a-
d, and Fig. 4, a-d) show that the offset caused a 
displacement of the plant output and a substantial 
increment of the MSE% of control which reached the 
value of 2.85%, for the proportional SMC and 
2.458% for the λ-tracking method of control. The 
MSE% of identification for the SMC without I-term 
also augmented to the value of 0.176% due to the 
noise and offset effects. The graphical results 
obtained with an I-term SMC exhibits a better 
performance with respect to the other methods of 
proportional control. It shows that the I-term SMC 
could compensate constant offsets and could reduce 
substantially the noise in the control system, which 
reduces the MSE% of identification too. So, the 
obtained simulation results confirmed the good 
quality of the derived adaptive SMC with neural 
identifier and I-term. 
 
 

5. CONCLUSIONS 
 
The paper proposed a new adaptive control system 
containing a RNN identifier, and a SMC. The SMC 
is derived defining the sliding surface with respect to 
the output tracking error and using a nonlinear plant 
identification, and state estimation RNN, which gives 
all the necessary state and parameter information to 
resolve the SMC. Furthermore, the adaptive abilities 
of the RNN permit the SMC to maintain the sliding 
regime when the plant parameters changed. To 
overcome plants perturbations, an integral term is 
added to the control. The good quality of the 
proposed control scheme is illustrated by simulation 
results, obtained with an aerobic continuous stirred 
tank reactor plant model. 
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