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Abstract: The windup properties of a recently suggested recursive parameter estimation
algorithm are investigated in comparison with a number of well-known techniques
such as the Normalized Least Squares Algorithm (NLMS) and the Kalman filter (KF).
An acoustic echo cancellation application is used as a benchmark for comparing the
properties of different approaches. The basic performanceof the method, both for white
and colored input signal, appears to be similar to that of theKF and superior to the
NLMS. When the energy in the input signal decreases, the algorithm performs best of all
compared estimation schemes. Once the solution of the Riccati equation of the algorithm
converged to a user defined point, it will stay there even if the input excitation is reduced.
This explains the good anti-windup properties of the method. Copyrightc2005 IFAC
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1. INTRODUCTION

Recursive parameter estimation is an integral part of
many signal processing and control applications such
as echo cancellation, active vibration control, fault de-
tection and indirect adaptive control. Different meth-
ods have been considered in the past, for instance the
Normalized Least Mean Squares (NLMS), Recursive
Least Squares (RLS) and fast Kalman filter methods,
see (Ljung and Gunnarsson, 1990).

Without stating a mathematical model for parameter
variation, no recursive parameter estimation method
can be proven to be better performance-wise than
any other, (Ljung and Gunnarsson, 1990). The matter
becomes even more complicated when robustness is-
sues are taken into consideration. From an engineering
point of view, it is more relevant to consider what
algorithm suites best a particular application. Then,
the nature of the application can provide necessarya
priori modelling information and also a useful bench-
mark for a fair and instructive comparison between
different estimation approaches.

In this paper recursive parameter estimation for acous-
tic echo cancellation (AEC) is studied. The problem of
AEC arises whenever a loudspeaker and a microphone
are located so that the microphone picks up the signal
from the loudspeaker, (Breininget al., 1999). The goal
of AEC is to remove the overhearing from the loud-
speaker into the microphone signal and thereby avoid-

ing an echo at the transmitting end. An illustration of a
typical AEC setup is given in Fig. 1. In the figure,x(t)
is the signal from the transmitting end ande(t) is the
returning signal to the transmitting end. The impulse
responseh(n) describes the echo path including the
loudspeaker acoustics and the microphone, whileĥ(n)
is the estimated impulse response. The local speech
signals(t) and the local noisev(t) constitute the ad-
ditional inputs to the microphone. If the estimateĥ(n)
is accurate, the echod(t) can be subtracted from the
outgoing signaly(t).x(t) ĥ(n) h(n) s(t)v(t)d̂(t)y(t)e(t) d(t)
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Fig. 1. Basic features of an acoustic echo cancellation
system.

A finite impulse response (FIR) filter is normally
used for modelling of the acoustic echo path and for



prediction of the echoes. Experiments show that no
detailed pole-zero structure can bea priori imposed on
the impulse response of the channel. The FIR structure
is thus chosen for its flexibility and to avoid stability
problems. Usually, this choice results in a high order
filter.

Since the algorithms are to be applied in real time, the
computational complexity and the memory require-
ments of the algorithm should be kept reasonably low.
It is also important that the algorithm adapts rapidly,
when the echo paths change.

A speech signal is colored and sometimes fails to
provide sufficient excitation for estimation of the filter
parameters. When the excitation in the input signal
is insufficient (the channel is silent), a phenomenon
referred to as (covariance) windup occurs in the
Kalman filter-based parameter estimation algorithm.
Then some eigenvalues of the Riccati equation grow
linearly in time until excitation is recovered.

Many methods aiming at prevention of the windup
problem have been proposed in the literature, see
(Gunnarsson, 1996; Cao and Schwartz, 2004) and ref-
erences therein. Usually, speech detection algorithms
are employed to detect whether the energy in the sig-
nal is large enough. If it is not, the estimation is turned
off. A common problem with such algorithms is the
choice of threshold for the filter adaptation. In prin-
ciple, the threshold has to be adaptive to have effect
in different acoustic environments. Another and more
systematic way to overcome this problem is to have a
parameter estimator that is insensitive to reduction of
the input signal energy.

Recently, a version of the Kalman filter with improved
windup properties was presented in (Stenlund and
Gustafsson, 2002). This algorithm, in the sequel re-
ferred to as the Stenlund-Gustafsson (SG) algorithm,
has the robustness of the NLMS and a convergence
rate similar to that of the Kalman filter. The SG-
algorithm is shown to be non-diverging under lack
of excitation in (Medvedev, 2003; Medvedev, 2004).
Steady state solutions are studied in (Evestedt and
Medvedev, 2005).

The main focus of this paper is on studying the anti-
windup properties of the SG algorithm in comparison
to the NLMS algorithm, the Kalman filter and the
algorithm suggested in (Cao and Schwartz, 2004).

As a benchmark for performance comparison of dif-
ferent parameter estimation methods, an AEC appli-
cation is used. Simulations are performed with white
noise and colored input (music), to evaluate basic per-
formance measures of the algorithm. Then an example
is given with a piecewise stationary input to highlight
the importance of the choice of the tuning parameters
in the SG algorithm. Next the windup properties are
investigated by letting the energy in the input signal
decrease over time and studying how the signal decay
is reflected in the behavior of the algorithms. Finally
simulations are run to test the performance of the SG
algorithm in terms of tracking of the set point.

2. STUDIED RECURSIVE PARAMETER
ESTIMATION ALGORITHMS

To describe the ideas briefly, consider the linear FIR
model, in the regressor form,y(t) = 'T (t)� + e(t) (1)

wherey(t) is the scalar output measured at discrete
time instancest = [0;1), ' 2 Rn is the regressor
vector containing current and past input values,� 2Rn is the parameter vector to be estimated and the
scalare is the disturbance.

According to (Ljung and Gunnarsson, 1990), the typi-
cal structure of the recursive algorithm to estimate the
filter parameters is given by,�̂(t) = �̂(t� 1) +K(t)(y(t)� 'T (t)�̂(t� 1)) (2)

whereK(t) is the adaptation gain.

A Kalman filter based approach to calculating the
adaptation gain is,K(t) = P (t)'(t) (3)P (t) = P (t� 1)� P (t� 1)'(t)'T (t)P (t� 1)r(t) + 'T (t)P (t� 1)'(t) +Q(t)
where P (�) 2 Rn�n; Q(�) 2 Rn�n; Q(�) �0; P (0) = P T (0); P (0) � 0; r(t) is a positive scalar
andt 2 f1; 2; : : : ;1g.
Optimality of the estimate,̂�, is guaranteed only when� is subject to a random walk model whereQ is the
covariance of the white process driving the random
walk model andr(t) = var e(t), (Ljung and Gunnars-
son, 1990). Since these quantities are seldom knowna
priori , even when the random walk model is justified,
they are usually treated as design parameters of the
estimation algorithm and chosen to achieve some de-
sired properties of the filter. For instance, the degrees
of freedom inQ andr can be traded in (3), for better
windup performance.

In (Stenlund and Gustafsson, 2002) a special choice
of Q(t) is used to control the convergence point of
Riccati equation (3),Q(t) = Pd'(t)'T (t)Pdr(t) + 'T (t)Pd'(t) (4)

wherePd 2 Rn�n; Pd > 0. Thus, the matrixPd be-
comes a stationary point of (3). Similarly, a directional
tracking algorithm in (Cao and Schwartz, 2004), the
one identified as Algorithm 1, makes use of the free
term in (3) in the form,Q(t) = '(t)'T (t)�+ 'T (t)'(t)
where  > 0 and � > 0 are some scalars. This
algorithm is obtained as a special case of the SG
algorithm by letting� = r andPd = I .

To economize on the demanding matrix computations
in the Riccati equation, an Averaged Kalman Filter
(AKFA) is developed in (Wigren, 1998). Estimating
the parameters in (1), AKFA replaces certain variables
with averages. This produces a small number of scalar
Riccati equations with adaptation gains that can be
pre-computed or computed online. The algorithm can
be summarized as follows.



�̂2(0) = 0; �pi(0) = pi(0) i = 1; : : : ; n�̂2(t) = 8<:��1� 1t� �̂2N (t� 1) + Nt x2(t)�1�t�N��̂2N (t� 1) + x2(t)� x2(t�N)�t>N�pi(t+ 1) = �pi(t) + S(t� i)qi � S(t� i)�p2i (t)�+ S(t� i)�pi(t)K(t) = N�+ ��̂2N (t) (�p1(t)x(t � 1) : : : �pn(t)x(t� n))T'(t) = (x(t� 1) : : : x(t � n))T ; x(t) = 0; t > 0
where the�pi(t) are averaged diagonal elements from
the Riccati equation andqi are the diagonal elements
of Q. The parameterN is the sliding window length
and �̂2N (t) is the estimate of the total input signal
energy in the sliding window. The functionS(t) is the
unit step function int = 0.

Since the experiments on AEC in this paper follow
(Wigren, 1998), some properties related to the tuning
of the AKFA are reproduced here. The initial choice
of thepi(0) can be for example a piecewise constant
exponential decay,pi(0) = �e[i�1=l℄; nl = m 2 Z+ (5)

Then the envelope of the impulse response is generally
governed by a few dominant poles, which results in an
exponential decay of the expected impulse response
power. The number of piecewise constant intervals
equalsm and[�℄ denotes the integer function.

If an upper bound on echo impulse response power
(Power) is available, it follows thatPower =Pni=1 pi(0). Summing up using (5) gives,� =8><>: 1nPower; m = 11l P ower 1� e�1� e1�e�m ; m > 1
where can be determined by specification of the
residual power at tapn as compared to tap1, us-
ing (5). If the residual power is specified byÆ as�e�(n�1)=l = pn(0) = Æp1(0) = Æ�, it follows that,Æ = 1; m = 1;  = � log(Æ)m� 1m; m > 1
By choosingÆ; n;m andPower, pi(0) can now be
computed. The parameter� = f1nmaxi pi(0) wheref1 � 1 follows.

The qi are related to the average variation rate of theith filter tap via the random walk model. They can be
determined asqi = q1e�[i�1=l℄; i = 2; : : : ; n
The parameterq1 is given byq1 = f22 �min � 2�n ; p1(0)��2�+ f2min � 2�n ; p1(0)�
where0 < f2 < 1. Further information on tuning of
the parameters can be found in (Wigren, 1998).

To get rid of the computational costs due to the Riccati
equation, the NLMS recursion is often employed,K(t) = �1+'T (t)'(t)'(t) ,where� 2 R+ is the
adaptation gain. In (Ljung and Gunnarsson, 1990), it

is shown that the NLMS can be obtained as a special
case of the Kalman filter with the parameters,Pd = �I; � 2 R+; P (0) = Pd; r(t) = 1 (6)

in the equations (3), (4). In the NLMS, the Riccati
equation becomes redundant since it is initiated at its
stationary point. Thus, the resulting filter (2) becomes
insensitive to loss of excitation. In fact, Algorithm 1
in (Cao and Schwartz, 2004) coincides exactly with
the NLMS provided the Riccati equation is initiated
asP (0) = I . Notice here that iterating the Riccati
equation at each step significantly improves conver-
gence rate of the NLMS in the case of non-stationary
data.

Recapitalizing for the recursive parameter estimation
algorithms, one can note that optimality of parameter
estimates (minimum varianceetc.) is seldom an is-
sue. Performance wise the tradeoff is mostly between
tracking abilities of the estimate and its robustness
to lack of excitation. The inflicted computational cost
and memory demand are as well highly important in
real time applications.

When high convergence speed is desired, the data are
persistently exciting and processor power is available,
the Kalman filter is the best choice. Fast Kalman-type
algorithms have been suggested, but many schemes
show numerical stability problems, (Hänsler, 1992). If
highest robustness and cheap implementation are the
main priorities, the NLMS is probably the algorithm
to go for. However, the choices in between are more
difficult to make.

3. PROPERTIES OF THE ALGORITHMS

In (Wigren, 1998) the properties of the AKFA were
compared to those of the Kalman filter and the NLMS.
By using numerical examples, the AKFA was shown
to perform significantly better than the NLMS, in
terms of settling time to the same echo suppression
level, for white inputs. In fact, the proposed scheme
performed very close to the Kalman filter. For colored
signals (music), the Kalman filter performed best.
The AKFA, however, performed significantly better
than the NLMS algorithm at expense of an negligible
increase of the computational burden. However, the
algorithms were not tested for a case of insufficient
excitation.

The SG algorithm was developed especially for han-
dling the windup phenomenon. It is possible to see,
(Evestedt and Medvedev, 2005), that (3) can, both for
symmetric and non-symmetric solutions, be written
as, P (t) = A�1t (P (t� 1))P (t� 1)A�Tt (Pd) (7)�A�1t (P (t� 1))PdA�Tt (Pd) + Pd
whereAt(X) = I+r�1(t)X'(t)'T (t); X 2 Rn�n.
The equation above is a discrete Sylvester difference
equation. Neglecting the dependence of one of theAt operators onP (t � 1) makes it possible to apply
theory of linear time-varying systems to the problem
of analyzing the solutions to (7).

In (Medvedev, 2004) it is proved that in the Riccati
equation (3) written as (7), theP -matrix does not
diverge, in the sense of some norm, when the input
signal is not persistently exciting. The matrixPd is
a stationary point of (7) and is as well the tuning
parameter. For stationary experimental conditions, a
good choice ofPd is the stationary solution of the



Riccati equation for the corresponding Kalman filter.
In case of non-stationary data with a known time
variance, a scheduled sequence ofPd approximating
the actual non-stationarity can be used.

When the input signal is persistently exciting, the SG-
algorithm converges toPd. If the excitation is not
sufficient in some directions, it can be shown that a
manifold of stationary solutions exists, (Evestedt and
Medvedev, 2005). Notice here that all the stationary
solutions to (7) within the manifold yield the same
Kalman gainK(t) = Pd'(t) in (3).

If the Sylvester equation (7) converges to one of the
stationary solutions and the excitation remains insuf-
ficient, then the solution will not depart from the sta-
tionary point. Particulary, if there has been sufficient
excitation in the input signal for a significant period of
time in the past and the solution has converged toPd,
it will stay there even if the excitation disappears in
some directions. This gives the method good windup
properties.

On the negative side, the computational complexity
of the SG-algorithm is similar to that of the Kalman
filter. However, the solution to (7) can be evaluated
element-wise provided the direction of excitation is
known beforehand, as it is when the data are periodic.

4. SIMULATIONS

In this section, simulations are used to study the prop-
erties of some recursive parameter estimation algo-
rithms. The first two examples are included to show
that with some basic stationary inputs, white noise and
a colored signal, the SG algorithm does not perform
worse than the others. Then an example is given to
highlight the influence of the choice ofPd on the
estimation performance of the SG algorithm. Next
it is shown that in terms of windup properties the
SG algorithm is the best one. Finally simulations are
performed to show how the SG algorithm behaves in
terms of set point tracking.

4.1 White noise input

This example compares the NLMS, AKFA, SG and
the Kalman filter in terms of convergence timeto a
given echo suppression. The input signalx(t) was
zero mean white noise, normally distributed with
unit variance. The simulated output signal was gener-
ated by a real-world time invariant impulse response,
and a Gaussian measurement noise (SNR=10dB) was
added. The AKFA was initialized with the same
parameters as in (Wigren, 1998),Power = 0:25(�6dB), n = 512, m = 16, Æ = 0:001, f1 = 1,f2 = 0:07815, � = 10�6, andN = 512. The num-
bers reflect a desired echo suppression of30 dB and
assumptions on the echo power.

The NLMS algorithm used an adaptation gain of� =0:01954 andn = 512 to get the same echo suppres-
sion as the AKFA. The possibility of using a time
varying adaptation gain is not utilized in this com-
parison. The Kalman filter was initialized similarly to
the AKFA. TheQ-matrix was however manipulated to
produce an echo suppression of30 dB.

The SG-algorithm was initialized as the Kalman fil-
ter. ThePd-matrix, was however chosen as the sta-
tionary point of the Kalman filter, obtained before-

hand through simulations. The performance curves are
shown in Fig. 2.
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Fig. 2. Convergence time comparison between the
NLMS-algorithm, the Kalman filter, AKFA and
the SG-algorithm, to a given echo suppression.
The measurement of quality is misalignment,

defined as� = jh�ĥjjhj
As can be seen above, the performance of the SG-
algorithm, with a proper choice ofPd, is similar to
that of the Kalman filter. The convergence time of the
AKFA is, as expected, somewhere between the NLMS
and the Kalman filter while its transient response is of
the same character as that of the SG-algorithm and the
Kalman filter.

4.2 Colored input

This example compares the NLMS, AKFA, SG and
the Kalman filter when the input signal is colored
(11s of music, (Cale, 1976)). Music is a typical signal
in this kind of experiments since it usually includes
both foreground and background sounds as well as
voice. The output signal was generated using a512-
tap real world time invariant impulse response and
white Gaussian noise was added (SNR=10dB). The
AKFA was tuned as in the white noise case. The
NLMS-algorithm and the Kalman filter had the same
parameter settings as in the previous case. The SG-
algorithm used three different constantPd-matrices,
obtained at three different times from simulations with
the Kalman filter. A result of the simulation is given in
Fig. 3.
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Fig. 3. Estimation accuracy of the NLMS-algorithm,
the Kalman filter, AKFA and the SG-algorithm
using a non-stationary input (music) and different
choices ofPd.

In this case the Kalman filter performs the best, which
should be expected considering the colored input. The
AKFA performs significantly better than the NLMS
algorithm. The SG algorithm performs similarly to the
Kalman filter all three different choices ofPd.



4.3 Piecewise stationary input

This example provides some insight into the impor-
tance of the choice of thePd matrix. The input sig-
nal toggled between two zero mean, white noise pro-
cesses,e1(t) ande2(t) with different variances,�1 and�2, x(t) =8>>><>>>: e1(t) 1 < t � 105e2(t) 105 < t � 1:5 � 105e1(t) 1:5 � 105 < t � 2 � 105e2(t) 2 � 105 < t � 2:5 � 105e1(t) 2:5 � 105 < t � 3 � 105
The output signal was generated as in the colored
input example, with a truncated impulse response of
64 taps. The initial guess ofP , for the Kalman filter
based algorithms, was chosen similarly to the AKFA
in the previous examples. The SG algorithm used the
stationary solution to the Riccati equation with the
different input signals,e1(t) ande2(t), as the choice
for Pd.

Three different simulations were performed. The first
one compares the Kalman filter with the SG algorithm,
when it is known beforehand when the input signal
shifts. At each such shift thePd matrix is also changed
accordingly. The results are shown in Fig. 4. As can be
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Fig. 4. Estimation accuracy of the SG algorithm and
the Kalman filter using a piecewise stationary
input with scheduledPd. The curves are virtually
indistinguishable.

seen the performance of the two algorithms is similar
in this case.

If the Pd matrix is instead set constant, the results
obtained are shown in Fig. 5.
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Fig. 5. Estimation accuracy of the SG algorithm and
the Kalman filter using a piecewise stationary
input with constantPd

The figures above indicate that the choice ofPd in
the SG algorithm is important to the estimation per-
formance. If it is known beforehand that the input sig-
nal will be piecewise stationary, solving the algebraic

Riccati equation for each period of stationarity gives
the best choice ofPd at each stationarity interval.

4.4 Input signal with decaying energy

In this example the same11s of music as in the exam-
ple with colored noise were used as input signal. The
energy in the signal was however decreased over time
to investigate the algorithms’ robustness to windup.

The first seconds were white noise with unit variance
to provide the algorithms with initial sufficient excita-
tion. The output was created using the 64 tap impulse
response used in the previous example. The initial
guess ofP was chosen as in the previous examples.

The goal with this setup was to compare how the
NLMS, the AKFA, the SG algorithm, the Kalman
filter and the method referred to as Algorithm 1 in
(Cao and Schwartz, 2004), react to partial loss of
excitation. In Fig. 6 the misalignment of the estimated
parameters is shown. In Fig. 7 the condition number
of the P matrix for the Kalman based algorithms is
depicted.

As can be seen, the SG algorithm performs the best
and it also has a reasonable constant condition number
of theP matrix. The misalignment achieved with the
Kalman filter gets worse with time as the signal energy
decays. The condition number of theP matrix in the
Kalman filter also grows. The NLMS algorithm per-
forms worst when the energy decreases. Algorithm 1
achieves an estimation accuracy in between the NLMS
and the Kalman filter.
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Fig. 6. Misalignment for the recursive parameter esti-
mation algorithms when the input signal energy
decreases.
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Fig. 7. The condition number ofP for the Riccati
equation based recursive parameter estimation al-
gorithms when the input signal energy decreases.



4.5 Tracking

In this example the tracking performance of the SG
algorithm is studied. The input signal was zero mean
white noise with variance� = 5. The output signal
was created using the 64 tap impulse response used in
the previous example and theP -matrix was initialized
as the AKFA. If thePd matrix is considered as a
reference signal to the SG algorithm, the tracking time
is defined as the time for the algorithm to converge
to a specificPd. Here it is illustrated by simulating
a change ofPd at time t = 50000. The results
are shown in Fig. 8. As can be seen in the figure,
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Fig. 8. Tracking performance of the SG algorithm to a
specificPd, when changed att = 50000. Notice
logarithmic scale.

the algorithm converges exponentially, as the Kalman
filter (Goodwin and Sin, 1984).

It can be shown that if the excitation is nonpersistent,
there is a manifold of stationary solutions. To illustrate
this the input signal was chosen as a constant the first
50000 samples. Fig. 9 shows the simulation results.
When the input signal is not persistently exciting,
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Fig. 9. Tracking performance of the SG algorithm
when the input signal is not persistently exciting.

the difference between the stationary solution andPd is constant. When the excitation is recovered, the
solution however converges to the matrixPd.

5. CONCLUSIONS

The windup properties of a recursive parameter esti-
mation algorithm, referred to as the Stenlund Gustafs-
son (SG) algorithm are studied. As a benchmark for
comparing the properties of different recursive param-
eter estimation algorithms, an acoustic echo cancella-
tion application is used.

The SG algorithm is shown to perform similarly to the
Kalman filter in terms of convergence to a given echo
suppression with white noise input. With a colored

input signal, the accuracy of the estimates achieved by
the SG algorithm is close to that of the Kalman filter.
The importance of the choice of tuning parameters in
the SG algorithm is highlighted by simulations with
a piecewise stationary input signal. The algorithm is
shown by simulation to converge exponentially to a
pre-defined set point. When the energy in the input
signal decreases, the SG estimate has the best accu-
racy. The windup properties are characterized by the
condition number of the solution to the Riccati equa-
tion. Once converged to a specific steady-state point,
the Riccati equation of the SG-algorithm stays there
even when the excitation is insufficient. This gives the
method good anti-windup properties.
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