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Abstract: A concept of vector L2-gain is presented for switched systems. Each
subsystem is allowed to have individual input-output L2-gain during any time
interval when the subsystem is activated. Stability is derived from this vector L2-
gain for certain classes of control including output feedback. A small gain theorem
for switched systems with vector L2-gain is established which provides a tool for
analyzing the behavior of feedback interconnected switched systems. The small
gain condition is given in terms of the L2-gains of the coupled activated subsystems.
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1. INTRODUCTION

The L2-gain analysis of control systems has been
widely studied in the control area. Early works of
L2-gain analysis can be found in the framework
of dissipativity (Hill and Moylan, 1980). The L2-
gain analysis in state space form has attracted
even more attention. This form of L2-gain not only
provides a candidate for Lyapunov functions, but
also greatly relates to the solutions of H∞ control
problems.

As an important application of L2-gain anal-
ysis, small-gain theorems play a fundamental
role in stabilizing nonlinear feedback intercon-
nected systems (van der Schaft, 2000; Haddad
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and Chellaboina, 2001; Helton and James, 1999;
Teel, 1996). Besides, small gain theorems have
found more applications such as robust nonlin-
ear control (Jiang, 1999), input-to-state stability
(Karafyllis and Tsinias, 2004), etc. Small gain
theorems have also been generalized to variable
L2-gain settings to cover more general situations
(Lin and Gong, 2004).

Switched systems, as an important class of hy-
brid systems, have drawn considerable attention
in the control and computer communities in the
last decade (DeCarlo et al., 2000). Many re-
sults have appeared on stability and stabiliza-
tion problems for such systems (Hespanha et
al., 2005; Michel and Hu, 1999; Peleties and De-
Carlo, 1991; M. Zefran and Stein, 2001; Zhao
and Dimirovski, 2004) and are summarized in the
recent book (Liberzon, 2003). However, due to the
hybrid nature of switched systems, the description



of input-output relations becomes even more dif-
ficult. In this respect, there has been relatively
little work up to now. Recently, (Hespanha, 2003)
gave a method of computing the root-mean-square
gains of switched linear systems. The L2-gain was
analyzed for switched symmetric linear systems
under arbitrary switching (Zhai, 2003). Unfortu-
nately, almost all existing related results employ
a unified gain to measure all subsystems. Further,
in terms of small gain theorems, no results have
appeared for switched systems by now.

This paper gives a description of vector L2-gain
for switched systems. Each subsystem has its own
input-output L2-gain during any time interval
when the subsystem is activated, which preserves
the hybrid nature on input-output L2-gain repre-
sentation, and has less conservativity. This vector
L2-gain produces stability for a certain class of
control including output feedback. A small gain
theorem for switched systems with vector L2-gain
is established in terms of the condition on L2-
gains of the corresponding individual activated
subsystems.

2. VECTOR L2-GAIN

We consider a switched system of the form:

H : ẋ = fσ(x, uσ),
y = hσ(x) (1)

where σ : R+ → M = {1, 2, · · · ,m} is a switching
signal given or to be designed, x ∈ Rn is the state,
ui and hi(x) are respectively the control input
vector and output vector of the ith subsystem
and have appropriate dimensions. Furthermore,
we suppose fi(0, 0) = 0, hi(0) = 0, i = 1, 2, · · · ,m.
Corresponding to the switching signal σ, we have
the switching sequence

Σ = {x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · ,
|ij ∈ M, j ∈ N}, (2)

in which t0 is the initial time, x0 is the initial state
and N is the set of nonnegative integers. When
t ∈ [tk, tk+1), the ikth subsystem is activated.
For any j ∈ M , let Σt(j) = {tj1 , tj2 , · · · , tjk

, · · ·}
be the subsequence of {t0, t1, · · · , tk · · ·} such that
tj1 < tj2 < · · · < tjk

< · · · and the jth
subsystem is activated on [tk, tk+1) if and only if
tk ∈ Σt(j). In addition, we will need the following
assumption.

Assumption 2.1. For any finite T > t0, there
exist a positive integer K = KT , such that during
the time interval [t0, T ] the system (1) switches
no more than K times, independent of the initial
states in a vicinity of the origin .

This assumption is adopted to rule out arbitrarily
fast switching.

By L1[0, ∞) we denote the usual L1 function
space over [0, ∞), that is, µ = µ(t) ∈ L1[0, ∞)

if

∞∫

0

| µ(t) | dt < ∞. Let L+
1 [0, ∞) denote the

subset of L1[0, ∞) consisting of all nonnegative
functions.

For the system (1) the usual description of L2-
gain in state space form is still applicable. That
is, the system (1) has L2-gain γ if there exist a
positive definite function S(x) such that for any
t > t0, it holds that

S(x(t))− S(x(t0))

≤ 1
2

t∫

t0

(γ2‖uσ(t)(t)‖2 − ‖hσ(t)(t)‖2)dt.
(3)

However, this property that is standard for gen-
eral nonlinear systems is much too strong and
restrictive for switched systems. In fact, for a
switched system, each subsystem usually has its
individual L2-gain γi when this subsystem is ac-
tivated. Unifying {γi} by taking the maximum,
though possible, is obviously very conservative.
This can be seen, for example, in the setting of
a small gain theorem to be established where
the product of L2-gain γi of the corresponding
activated subsystems is less than one while that
obtained by taking the maximum is greater than
one. In addition, each individual subsystem has its
own energy function Si(x) and a common energy
function S(x) for all subsystems may not exist or
is difficult to find. Therefore, it is reasonable and
necessary to introduce a version of L2-gain for the
system (1) revealing all γi and Si(x). This can be
done by introducing the vector L2-gain as follows.

Definition 2.1. Let γ1, γ2, · · · , γm be positive
constants. System (1) is said to have vector L2-
gain {γ1, γ2, · · · , γm} under the switching law Σ if
there exist positive definite continuous functions
S1(x), S2(x), · · · , Sm(x) with Si(0) = 0, and func-
tions ωi

j(ui(t), t) ∈ L+
1 [0, ∞), 1 ≤ i, j ≤ m, i 6= j,

such that for ∀ui and k = 0, 1, 2, · · · , it holds that

Sik
(x(t))− Sik

(x(s))

≤ 1
2

t∫

s

(γ2
ik
‖uik

(t)‖2 − ‖hik
(t)‖2)dt,

tk ≤ s ≤ t < tk+1

(4)

Sj(x(tk+1))− Sj(x(tk))

≤ 1
2

tk+1∫

tk

(γ2
ik
‖uik

(t)‖2 − ‖hik
(t)‖2

+ ωik
j (uik

(t), t))dt, j 6= ik

(5)

Remark 2.1. If the system (1) has L2-gain γ
in the usual sense, then it has vector L2-gain



{γ, γ, · · · , γ} with ωi
j = 0, i 6= j. Therefore, the

concept of vector L2-gain is a natural generaliza-
tion of the usual one. Conversely, as pointed out
earlier, the vector L2-gain covers a more general
situation, such as no existence of a common energy
function S(x). In the definition 2.1, (4) describes
the usual L2-gain property for each subsystem
when being activated. While (5) gives relationship
between the activated ikth subsystem and any jth
inactivated subsystem. When the ikth subsystem
is activated on [tk, tk+1), the energy Sj(x) of the
jth inactivated subsystem changes from Sj(x(tk))
to Sj(x(tk+1)). This can be viewed as the result of
“energy” coming from the ikth subsystem to the
jth subsystem and is characterized by the “gen-
eralized supply rate” γ2

ik
‖uik

(t)‖2 − ‖hik
(t)‖2 +

ωik
j (uik

(t), t). Comparing (5) with (4) infers that
the jth inactivated subsystem may absorb more
energy from the ikth activated subsystem than
the ikth subsystem from itself. This allows the
description of vector L2-gain to fit more systems.
Intuitively however, absorbing too much energy
from the ikth subsystem will cause the instabil-
ity of the jth subsystem though the energy of
the jth subsystem may decrease to some extent
when it is activated. This is avoided by letting
ωik

j (uik
(t), t) ∈ L+

1 [0, ∞), which says that when
the jth subsystem is inactivated, the total in-
creased “energy” coming to the jth subsystem
from outside is bounded.

When the system (1) and Si(x) are all smooth,
some algebraic conditions can be derived to char-
acterize the vector L2-gain. For example, consider
the following smooth affine system

ẋ = fσ(x) + gσ(x)uσ,
y = hσ(x). (6)

It is not difficult to show that the system (6)
has vector L2-gain {γ1, γ2, · · · , γm} if the following
conditions hold when tk ≤ t < tk+1.

∂Sik

∂x
fik

+
1
2

1
γ2

ik

∂Sik

∂x
gik

gT
ik

∂ST
ik

∂x
+

1
2
hT

ik
hik

≤ 0(7)

∂Sj

∂x
(fik

+ gik
πik

)− 1
2
γ2

ik
‖πik

‖2

+
1
2
hT

ik
hik

− 1
2
ωik

j (πik
, t) ≤ 0,

(8)

where πik
is the solution to the following equation

∂Sj

∂x
gik

− γ2
ik

πT
ik
− 1

2
∂ωik

j

∂uik

|(uik
=πik

) = 0 (9)

with the boundary condition πik
(x) |x=0= 0.

3. STABILITY ANALYSIS

In this section, we will show the stability of a
switched system with vector L2-gain.

We first introduce the concept of asymptotic zero
state detectability for nonlinear systems, which
will be used to prove the asymptotic stability.

Definition 3.1. A system

ẋ = f(x),
y = h(x) (10)

is called asymptotically zero state detectable if for
any ε > 0, there exists δ > 0, such that when
‖ y(t + s) ‖< δ holds for some t ≥ 0, ∆ > 0 and
0 ≤ s ≤ ∆, we have ‖ x(t) ‖< ε.

Remark 3.1. This asymptotic zero state de-
tectability is a weaker version of small-time norm
observability (Hespanha et al., 2005).

Theorem 3.1: If the system (1) has vector L2-
gain {γ1, γ2, · · · , γm} under the switching law

∑
,

then, the origin is stable in the sense of Lyapunov
for any control ui(t) satisfying

‖ ui(t) ‖2≤ (1− ζ2
i )

γ2
i

‖ hi(t) ‖2 (11)

for some ζi, 0 ≤ ζi ≤ 1. If in addition, 0 < ζi ≤ 1,
all Si are globally defined radially unbounded
smooth functions, there exists at least one j such
that limk→∞(tjk+1 − tjk

) 6= 0, and all subsystems
of (1) are asymptotically zero state detectable,
then, the origin is globally asymptotically stable.

Proof. For any constant c > 0, let B(c) = {x| ‖
x ‖≤ c}, ri(c) = min

x
{Si(x)| ‖ x ‖= c} and

r(c) = min
i
{ri(c)}.

For any ε > 0, since ωi
j(ui(t), t) ∈ L+

1 [0, ∞),
there exists T > 0 such that for any T1, T2 ,
T ≤ T1 ≤ T2 ≤ ∞, it holds that

T2∫

T1

ωi
j(ui(t), t)dt <

1
m

r(ε), i, j ∈ M, i 6= j. (12)

Assumption 2.1 says that the system (1) switches
at most K times on the time interval [t0, T ] for
some integer K. Thus, tK ≥ T , no matter where
to start. Note that Si is positive definite and
Si(0) = 0, we can find δ1 > 0, δ1 < ε, such that
Si(x) < 1

2r(ε) when x ∈ B(δ1). For this δ1 > 0, we
can find δ2 > 0, δ2 < δ1 such that Si(x) < r(δ1)
when x ∈ B(δ2). Continuing this procedure, we
finally have a sequence

ε = δ0 > δ1 > δ2 > · · · > δK > 0

with the property:

Si(x) < r(δp), if x ∈ B(δp+1), 1 ≤ p ≤ K − 1,

Si(x) <
1
2
r(ε), if x ∈ B(δ1),∀i (13)

Note that Sik
(x(t)) decreases when the ikth sub-

system is activated, if we start within B(δK), we



will stay in B(δ1) as long as we switch no more
than K times and no matter how we switch. This
implies x(t) ∈ B(δ1), t ∈ [t0, tK ] if x(0) ∈ B(δK).
In particular, Si(x(tK)) < 1

2r(ε), i ∈ M .

Now, for any j ∈ M , let tjq ∈ Σt(j) and tjq > tK .
Obviously, jq ≥ K + 1. It is easy to deduce from
(5) that

Sj(x(tjq ))− Sj(x(tK))

=
jq−K−1∑

λ=0

(Sj(x(tK+λ+1))− Sj(x(tK+λ)))

≤ 1
2

jq−K−1∑

λ=0

tK+λ+1∫

tK+λ

(γ2
iK+λ

‖uiK+λ
(t)‖2

−‖hiK+λ
(t)‖2 + ω

iK+λ

j (uiK+λ
(t), t))dt,

(14)

where ωj
j = 0. Taking (11) into account we have

Sj(x(tjq ))− Sj(x(tK))

≤ 1
2

jq−K−1∑

λ=0, iK+λ6=j

tK+λ+1∫

tK+λ

ω
iK+λ

j (uiK+λ
(t), t)dt

≤ 1
2

m∑

i=1, i 6=j

∞∫

tK

ωi
j(ui(t), t)dt <

1
2
r(ε)

(15)

Therefore,

Sj(x(tjq )) ≤ Sj(x(tK)) +
1
2
r(ε) < r(ε)

Thus, x(t) ∈ B(ε) for all t and stability follows.

Next, we show the asymptotic stability under the
condition 0 < ζi ≤ 1 and asymptotic zero state
detectability. The following proof is motivated by
(Hespanha et al., 2005).

Substituting (11) into (4) we have

1
2
ζ2
ik

t∫

s

‖hik
(t)‖2dt

≤ Sik
(x(s))− Sik

(x(t)), tk ≤ s ≤ t < tk+1

(16)

For the j satisfying limk→∞(tjk+1 − tjk
) 6= 0, we

can select δ > 0 such that the set Λ = {k|tjk+1 −
tjk

≥ δ} is infinite. Define a function

h̃j(t) =





hj(x(t)), t ∈
⋃

k∈Λ

[tjk
, tjk+1)

0, otherwise
(17)

For any t > 0, when tjk
≤ t < tjk+1 for some

k ∈ Λ, (16) gives

1
2
ζ2
j

t∫

t0

h̃T
j (t)h̃j(t)dt

≤
k∑

p=1

(
Sj(x(tjp

))− Sj(x(tjp+1))
)

= Sj(x(tj1))− Sj(tjk+1)

+
k−1∑
p=1

(
Sj(x(tjp+1))− Sj(x(tjp+1))

)
.

(18)

It can be easily derived that

Sj(x(tjp+1))− Sj(x(tjp+1))

=
jp+1−jp−1∑

λ=1

(
Sj(x(tjp+1+λ))− Sj(x(tjp+λ))

)

≤ 1
2

jp+1−jp−1∑

λ=1

tjp+1+λ∫

tjp+λ

(−ζ2
ijp+λ

‖hijp+λ
(t)‖2

+ω
ijp+λ

j (uijp+λ
(t), t))dt

≤ 1
2

jp+1−jp−1∑

λ=1

tjp+1+λ∫

tjp+λ

(ω
ijp+λ

j (uijp+λ
(t), t))dt

(19)

Therefore,

k−1∑
p=1

(Sj(x(tjp+1))− Sj(x(tjp+1))

≤ 1
2

jp+1−jp−1∑

λ=1

k−1∑
p=1




tjp+1+λ∫

tjp+λ

(ω
ijp+λ

j (uijp+λ
(t), t))dt




≤ 1
2

m∑

i=1, i 6=j

∫

t0

∞
(ωi

j(ui(t), t))dt < ∞.

(20)

When t /∈ [tjk
, tjk+1) for any k ∈ Λ, there exists

k ∈ Λ such that t ≥ tjk+1 and t < tjq for
any q ∈ Λ and q > k. In this case, we have
h̃j(s) ≡ 0, s ∈ [tjk+1, t], and (18) still holds. It

follows from (18) and (20) that

∞∫

t0

h̃T
j (t)h̃j(t)dt

is finite. Now , we show h̃j(t) → 0 as t → ∞.
Suppose this is false, then there exist ε > 0 and
a sequence of time t, say, q1, q2, · · · , qk → ∞,



satisfying h̃T
j (qi)h̃j(qi) ≥ ε, ∀i. Note that (16) and

(5) guarantee the boundedness of x(t), and ẋ(t) =
fσ(x(t), uσ(t)) is also bounded. Hence, h̃j(t) is
uniformly continuous over

⋃

k∈Λ

[tjk
, tjk+1). In view

of tjk+1 − tjk
≥ δ, we have

∞∫

t0

h̃T
j (t)h̃j(t)dt = ∞,

which contradicts the fact that

∞∫

t0

h̃T
j (t)h̃j(t)dt is

finite. Therefore, hj(t) → 0. So, x(tjk
) → 0 as

k → ∞ and k ∈ Λ follows from the asymptotic
zero state detectability of the jth subsystem, and
this in turn implies x(t) → 0 as t → ∞ due to
stability of the closed-loop system and continuity
of x(t).

Remark 3.2. The control can be chosen as linear
output feedback of the form ui = Giyi with all
the eigenvalues of the matrix GT

i Gi less than one.

4. SMALL-GAIN THEOREM

This section will establish a small-gain theorem
for switched systems.

Suppose we have two switched systems:

H1 : ẋ = fσ1(x, uσ1),
y = hσ1(x), (21)

and

H2 : ż = gσ2(z, vσ2),
w = lσ2(z), (22)

where σi : R+ → Mi = {1, 2, · · · ,mi}, i = 1, 2.
The meaning of other variables are the same as
those in the system (1).

Without loss of generality, we assume that the two
switched systems have the same switching time
sequence {t0, t1, · · · , tk, · · ·} because otherwise we
can put all the time instants of the two switching
time sequences together and then reorder them
and thus form a unified switching time sequence.
When t ∈ [tk, tk+1), the i1kth and i2kth subsystems
of H1 and H2 are activated respectively.

Theorem 4.1. Suppose that H1 and H2 have
vector L2-gains {γ11, γ12, · · · , γ1m1} with S1i, ω

i
1j

and {γ21, γ22, · · · , γ2m2} with S2i, ω
i
2j respectively.

If there exists α such that

γ1i1
k

< α <
1

γ2i2
k

, (23)

then, the feedback interconnected system of H1

and H2 with

uσ1 = −lσ2(z), vσ2 = hσ1(x) (24)

is stable. If in addition, all S1i, S2i are globally
defined radially unbounded, there exists at least
one interconnected subsystem having infinite acti-
vated time intervals with positive dwell time, and
all subsystems of H1 and H2 are asymptotically
zero state detectable, then, the feedback intercon-
nected system is globally asymptotically stable.

Proof. We follow the method in (van der Schaft,
2000). For the interconnected system, let

Sj1j2(x, z) = S1j1(x) + α2S2j2(z). (25)

In particular, when t ∈ [tk, tk+1), the i1kth and
i2kth subsystems of H1 and H2 are activated re-
spectively, we have

Si1
k
i2
k
(x, z) = S1i1

k
(x) + α2S2i2

k
(z). (26)

When tk ≤ s ≤ t < tk+1 the vector L2-gains of
H1 and H2 give

S1i1
k
(x(t))− S1i1

k
(x(s))

≤ 1
2

t∫

s

(γ2
1i1

k
‖ui1

k
(t)‖2 − ‖hi1

k
(t)‖2)dt,

(27)

and

S2i2
k
(z(t))− S2i2

k
(z(s))

≤ 1
2

t∫

s

(γ2
2i2

k
‖vi2

k
(t)‖2 − ‖li2

k
(t)‖2)dt,

(28)

Thus, the feedback relation (24) gives

Si1
k
i2
k
(x(t), z(t))− Si1

k
i2
k
(x(s), z(s))

≤ 1
2

t∫

s

(
(α2(γ2i2

k
)2 − 1) ‖ hi1

k
(ρ) ‖2

+
(
(γ1i1

k
)2 − α2

)
‖ li2

k
(ρ) ‖2

)
dρ,

(29)

Note that α2(γ2i2
k
)2 − 1 < 0 and (γ1i1

k
)2 −α2 < 0,

Si1
k
i2
k
(x(t), z(t)) decreases on the corresponding

active time interval. Now, we estimate the change
of Sj1j2 on any time interval [tk, tk+1) when the
j1th subsystem of H1 or j2th subsystem of H2 is
inactivated. In this case, (j1, j2) 6= (i1k, i2k) must
hold.

A straightforward computation shows that



Sj1j2(x(tk+1), z(tk+1))− Sj1j2(x(tk), z(tk))

≤ 1
2

tk+1∫

tk

(
(α2(γ2i2

k
)2 − 1) ‖ hi1

k
(t) ‖2

+
(
(γ1i1

k
)2 − α2

)
‖ li2

k
(t) ‖2

)
dt

+
1
2

tk+1∫

tk

(ωi1k
1j1

(ui1
k
(t), t) + α2ω

i2k
2j2

(vi2
k
(t), t))dt

≤ 1
2

tk+1∫

tk

(ωi1k
1j1

(ui1
k
(t), t) + α2ω

i2k
2j2

(vi2
k
(t), t))dt

(30)

Since ω
i1k
1j1

∈ L+
1 [0, ∞) and ω

i2k
2j2

∈ L+
1 [0, ∞),

similarly to the proof of the theorem 3.1, we can
complete the proof.

Corollary 4.1. The small gain condition (23) is
automatically satisfied if all gains satisfy γ1i < 1,
γ2j < 1. In this case α can be selected as 1.

5. CONCLUDING REMARKS

We have proposed a notion of vector L2-gain for
switched systems. The L2-gain of each individ-
ual subsystem when being activated is preserved
in the representation, which is helpful for un-
derstanding the individual input-output behav-
ior. This vector L2-gain could be regarded as a
“generalized dissipativity”. Unlike usual nonlinear
systems for which a single dissipativity inequality
is enough to describe the dissipative behavior,
we have to describe the feature of both active
and inactive subsystems, especially the impact of
a activated subsystem on other inactivated sub-
systems. This is characterized, in this paper, by
the functions ωi

j . Vector L2-gain is also shown to
produce stability for certain class of control, in
particular, output feedback. A small gain theo-
rem for switched systems with vector L2-gain is
established by using the small gain condition for
the couple of activated subsystems. As for usual
nonlinear control systems, this small gain theo-
rem provides a tool for control of interconnected
switched systems.
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