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Abstract: Stationary properties of a recently suggested windup prevention scheme for
recursive parameter estimation are investigated in the case of insufficient excitation. When
the regressor vector contains data covering the whole parameter space, the algorithm
has only one stationary point, the one defined by a weighting matrix. If the excitation
is insufficient, the algorithm is shown to possess a manifoldof stationary points and
a parametrization of this manifold is given. However, if thepast excitation conditions
already caused the algorithm to converge to a certain point,the stationary solution would
not be affected by current lack of excitation. This propertyguarantees good anti-windup
properties of the studied parameter estimation algorithm.Copyrightc
2005 IFAC
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1. INTRODUCTION

Consider the following regressor modely(t) = 'T (t)� + e(t) (1)

wherey(t) is the scalar output measured at discrete
time instancest = [0;1), ' 2 Rn is the regressor
vector,� 2 Rn is the parameter vector to be estimated
and the scalare is disturbance.

1.1 Recursive estimation

The estimation of� is often performed by a linear re-
cursive algorithm of the ”prediction-correction” form�̂(t) = �̂(t� 1)+K(t)�y(t)� 'T (t)�̂(t� 1)� (2)

where the first (prediction) term in the right hand part
of the equation highlights the fact that the parameter
vector is assumed to be constant in absence of infor-
mation on parameters variations.

If e(t) is white and the parameter vector is subject to
the random walk model driven by a zero-mean white
sequencew(t) �(t) = �(t� 1) + w(t) (3)

the optimal, in the sense of minimum of thea pos-
teriori parameter error covariance matrix, estimate is
yielded by (2) with the Kalman gainK(t) = P (t)'(t)
whereP (t), t = [1;1) is the solution to the Riccati
equationP (t)=P (t� 1)�P (t� 1)'(t)'T (t)P (t� 1)r(t) + 'T (t)P (t� 1)'(t) +Q(t)

(4)

for someP (0) = P T (0); P (0) � 0 describing
the covariance of the initial guess of̂�(t); t = 0.
Optimality of the estimate is guaranteed only whenQ
is the covariance ofw andr(t) = var e(t), (Ljung and
Gunnarsson, 1990). Since these quantities are seldom
a priori known, they are usually treated as design
parameters of the estimation algorithm and chosen asQ(�) 2 Rn�n; Q(�) � 0; r(t) > 0 in order to achieve
some desired properties of the filter.



1.2 The role of excitation

Excitation properties of the regressor vector sequence
play an important role in the dynamic behavior of (4).
When the excitation in the input signal is insufficient,
a phenomenon referred to as (covariance) windup (aka
blow-up) can occur. This means that some eigenvalues
of P tend to be very large. Here the term ”insufficient
excitation” refers to the situation when the regressor
data do not cover the whole parameter space. The
more commonly used term ”persistent excitation” also
assumes that the excitation is sufficient under a signifi-
cant period of time and therefore is more restrictive. In
Section 3, the notion of sufficient excitation is defined
in mathematical terms.

The mechanism behind windup in the Riccati equation
can be explained frome. g. the random walk model.
Indeed, whenQ > 0, all the elements in� vary. At the
same time, the fact that the excitation is not sufficient
means that variations in some of the parameters cannot
be observed from the system outputy. SinceP (t) de-
scribes the covariance of the estimation error�� �̂, the
eigenvalues ofP (�) corresponding to the unobservable
elements of� grow because the uncertainty of the
corresponding estimates is increasing at each step.

Another complication caused by lack of excitation is
that the solutions to Riccati equation (4) do not have
to be symmetric and unique. This also has implica-
tions for the standard proof of stability of the Kalman
filter given in (Jazwinski, 1970), whereP�1(t) is
used to form a Lyapunov function. Furthermore, the
stabilizing solution provides the upper bound for all
real symmetricsolutions of the Riccati equation and
asymmetricsolutions do not have to obey this bound.
Since the Riccati equation has to be solved on-line
in the Kalman filter, special precautions have to be
taken to avoid convergence to undesirable solutions.
This can be easily achieved bye. g.propagating only
the elements ofP (t) on and over the main diagonal.
However, asymmetrical solutions have been found to
be useful in control applications,(Cloutier and Stans-
bery, 1999). No similar examples in state estimation
are available to the authors.

1.3 Previous work

As pointed out in (Cao and Schwartz, 2004), the
windup phenomenon in the Kalman filter has not been
much analyzed until recently. Therefore most of the
suggested anti-windup schemes for Kalman filter pa-
rameter estimation are ofad hocnature and are lack-
ing strict proof of non-divergence under insufficient
excitation, seee. g. (Hägglund, 1983), (Bittantiet
al., 1990).

In the approach taken in (Stenlund and Gustafs-
son, 2002), in the sequel referred to as the Stenlund-
Gustafsson (SG) algorithm, a special choice ofQ(t) is
used to control the convergence point of theP -matrix:

Q(t) = Pd'(t)'T (t)Pdr(t) + 'T (t)Pd'(t) (5)

wherePd 2 Rn�n; Pd > 0.

The structure of (5) is designed to reflect the fact thatQ, loosely speaking, specifies in what direction the
solution to the Riccati equation has to be updated at
each step. If the sequence of'(t); t 2 [0; : : :1) is
persistently exciting, the matrixQ can be chosen to
be positive definite since the whole parameter spaceRn is covered by the excitation. However, dealing
with non-stationary data, persistent excitation can not
always be guaranteed. Therefore, it is reasonable to
chooseQ(t) so thatP (t) is updated only in the sub-
space where excitation is present, that is ImQ(t) =
Im ''T . Addition of r > 0 in the denominator of (5)
prevents division by zero when'(t) = 0 for somet.
A formal proof of the fact that (4) with the free
term chosen according to (5) is non-diverging both
for the cases of sufficient and insufficient excitation
can be found in (Medvedev, 2003; Medvedev, 2004).
However, stationary properties of the scheme are not
considered there. The weighting matrix,Pd, consti-
tutes the main degree of freedom in the SG-algorithm.
A good choice ofPd is the stationary point of the
Kalman filter for the specific problem. If a non-
stationary data set can be considered as piecewise
stationary, a number of differentPd can be used,
one for each interval of stationarity, (Evestedt and
Medvedev, 2005).

The SG algorihm can be seen as a generalization of
the normalized least mean squares (N-LMS), a method
that is well-known and widely used in engineering
practice. In (Ljung and Gunnarsson, 1990), it is shown
that the N-LMS can be obtained as a special case of
the Kalman filter with the parametersPd = �I; � 2 R+; P (0) = Pd; r(t) = 1 (6)

in the equations (4), (5). In the N-LMS, the Ric-
cati equation becomes redundant since it is initi-
ated at its stationary point. Thus, the resulting filter
(2),(4),(5),(6) becomes insensitive to loss of excita-
tion. Similarly, in the SG algorithm, once the Riccati
equation has converged to the stationary pointPd, it
becomes robust against insufficient excitation, in the
sense that the solution does not diverge. The mecha-
nism behind this behavior is explained in more detail
in Section 3 of this paper.

Interestingly, a directional tracking algorithm pre-
sented in (Cao and Schwartz, 2004), the one identified
as Algorithm 1, also is very close to the N-LMS. The
suggested choice of the free term in (4) isQ(t) = 
'(t)'T (t)�+ 'T (t)'(t)
where 
 > 0 and � > 0 are some scalars. This
algorithm becomes equivalent to the N-LMS with�
 = 1 and being initiated at the stationary point of
(4), i. e.P (0) = 
I . Thus, it is also a special case of
the SG algorithm.



It is as well worth to note at this point that the proofs of
boundedness of the recursive estimation algorithms in
(Cao and Schwartz, 2004) are based on the assumption
that all considered solutions to the Riccati equation
are positive semidefinite. As it is already mentioned
before, this cannot be guaranteed under lack of excita-
tion.

1.4 Contribution of the present paper

The main result of the paper is formulated in Propo-
sition 4 and provides an explicit parametrization of
all stationary solutions to the Riccati equation aris-
ing in the SG algorithm. Under sufficient excitation,
the parametrization implies that the stationary point is
unique and is pre-assigned by the matrixPd. When the
excitation is insufficient, the parametrization defines
the manifold of all possible solutions, as well asym-
metric ones.

The paper is organized as follows. First an equivalent
linear time-varying form of the Riccati equation in
the SG algorithm, (4),(5) is provided. The equation
itself was used before, seee. g.(Stenlund and Gustafs-
son, 2002) and (Medvedev, 2003; Medvedev, 2004),
but only a proof for the case whenP > 0 had been
originally given in (Stenlund and Gustafsson, 2002).
Then, using the linear form, stationary points of (4),(5)
are investigated and some results on the behavior of
the algorithm under insufficient excitation are pre-
sented.

2. SYLVESTER EQUATION FORM

In (Stenlund and Gustafsson, 2002), it is shown that,
for non-singularP (�), the differenceE(t) = P (t) �Pd obeys the recursionE(t+ 1) = A�1t (P (t))E(t)A�Tt (Pd) (7)

whereAt(X) = I + r�1(t)X'(t)'T (t). When ex-
citation is insufficient, positive definiteness of the so-
lution to the Riccati equation cannot be guaranteed.
Therefore, before analyzing anti-windup properties of
the SG algorithm, it is important to check whether (7)
also holds under milder conditions.

It can be proved that the quadratic Riccati equation for
the SG algorithm is equivalent to a linear time-varying
matrix equation without restricting the solutions to the
non-singular ones.

Proposition 1.Equation (4) can, with the special
choice ofQ as (5), be rewritten as the following dis-
crete Sylvester difference equationP (t) = A�1t (P (t� 1))P (t� 1)A�Tt (Pd) (8)� A�1t (P (t� 1))PdA�Tt (Pd) + Pd
whereAt(X) = I+r�1(t)X'(t)'T (t); X 2 Rn�n.

Proof: See Appendix. 2

The equation above is a discrete Sylvester difference
equation, linear inP if the dependence ofAt(P (t))
can be seen as a general time variance. This way
of thinking is widely used ine. g. handling non-
linear systems via linear time-varying models. Riccati
equation (4) is being embedded into a broader class of
linear time-varying matrix equationsP (t) = A�1t (Y (t))P (t� 1)A�Tt (Pd) (9)�A�1t (Y (t))PdA�Tt (Pd) + Pd
for arbitraryY (t) 2 Rn�n; t = 0; 1; : : : . Trajectories
of (4) are the same as those of (9) only whenY (t) =P (t � 1). It is also clear that the structure of (9) does
not necessarily imply that the solution is symmetric.

The linear character of (7) becomes more obvious
when it is written in vectorized form with respect toe(�) = ve
 E(�) (seee. g.(Horn and Johnson, 1991))e(t+ 1)=M (Pd; P (t)) e(t)M (Pd; P (t)) =A�1t (Pd)
A�1t (P (t)) (10)

where
 denotes Kronecker (tensor) product.

3. STATIONARY POINTS

The purpose of this section is to study stationary
points of Riccati equation (4) with the special choice
of the free term (5) arising in the SG algorithm. The
stationary solutions are evaluated both for the case of
complete and insufficient excitation.

Consider a stationary point of (7)E = E(t+ 1) = E(t)
Then the following algebraic condition holdsE = A�1t (P (t))EA�Tt (Pd) (11)

In vectorized form (11) becomes(M(Pd; P (t))� I) e = 0; e = ve
 E (12)

In order to separate the direction of excitation at each
particular time instant from its intensity, introduce a
re-parametrization of the matrix functionAt(X),At(X) = I + 
XU(t) (13)

where
(t) = r�1(t)'(t)T'(t) andU(t) = '(t)'T (t)'T (t)'(t)
The matrixU(t) is a Hermitian projection with
rankU(t) = 1. Define the normalized eigenvectors ofU(t) as�i(t); i = 1; : : : ; n, where�1(t) corresponds
to the unit eigenvalue ofU(t) and �2(t); : : : ; �n(t)
correspond to the zero eigenvalues ofU(t). Then
(t)
describes the energy in the regressor vector at timet
and�1(t) characterizes the direction.

The regression vector'(t) is called persistently excit-
ing inm steps, (Söderström and Stoica, 1989),



if there exists a constant0 < 
 < 1 and an integerm > 0 such that for all t,t+mXk=t+1'(k)'T (k) � 
I (14)

This means that when'(t) is persistently exciting, the
spaceRn is spanned by'(t) in m steps.

Excitation is called sufficient at timet when the fol-
lowing rank condition is satisfiedrank � �1(t+ n� 1) : : : �1(t) � = n (15)

In terms of (14) this means thatm = n and (15) does
not have to hold forall t.
The argument of�1(t) and
(t) is often suppressed
in the sequel for brevity when it does not lead to
confusion.

Define the spectrum ofX 2 Rn�n as�(X) = f�i(X); i = 0; : : : ; ng
Due to the Kronecker product structure ofM(�; �), the
spectrum of it is easy to evaluate.

Proposition 2.The matrixN(Pd; P (t)) =M(Pd; P (t))� I
in (12) has the eigenvalues�(N(Pd; P (t))) = f1� (
�T1 P (t)�1)(
�T1 Pd�1)(
�T1 P (t)�1)(
�T1 Pd�1) ;�
�T1 P (t)�11 + 
�T1 P (t)�1 ; : : : ; �
�T1 P (t)�11 + 
�T1 P (t)�1| {z }n�1 ;�
�T1 Pd�11 + 
�T1 Pd�1 ; : : : ; �
�T1 Pd�11 + 
�T1 Pd�1| {z }n�1 ; 0; : : : ; 0| {z }(n�1)2 g (16)

Proof: See Appendix. 2
The eigenvectors ofN(�; �) are as well easily obtained.

Proposition 3.The eigenvectors corresponding to the
zero eigenvalues ofN(Pd; P (t)) arexk = �i
�j ; i =2; : : : ; n; j = 2; : : : ; n; k = 1; : : : ; (n� 1)2, where�i; i = 2; : : : ; n are the eigenvectors corresponding to
the zero eigenvalues ofU(t).
Proof: See Appendix. 2
Now all the necessary partial results are in place to
formulate the main contribution of the paper. The
proposition below completely characterizes the space
of all possible stationary solutions of (4), (5).

Proposition 4.A stationary solutionP (t) = P � =
const of (8) can, for a givenPd, be decomposed asP � = Pd + nXi=2 nXj=2 kij�i�Tj (17)

wherekij are scalars. When the input signal is suffi-
ciently exciting, the stationary solution is exactlyPd,
i. e.kij = 0; i = 2; : : : ; n; j = 2; : : : ; n.

Proof: See Appendix. 2
With each time step (4),(5) converges towards one of
the possible solutions of (11). When the input signal
is persistently exciting, the vectors spanningKer U(t)
at each time instant are linearly independent and infor-
mation about the whole parameter space is eventually
collected by the algorithm. Thus, the solution will
converge toPd which is the stationary point of (4),
(5). If, however, the input signal is not persistently
exciting, convergence toPd cannot be guaranteed.

Examining the structure of (11), one can conclude that
a stationary point of (4),(5) does not have to be a semi-
definite or even symmetric matrix. Neither it has to be
bounded. However, the only source of disturbance in
solving the Riccati equation is numerical errors and
it is unlikely that their structure will fit�i�Tj ; i =2; : : : ; n; j = 2; : : : ; n and their magnitude will be
significant.

Example 1.Proposition 4 implies that all possible so-
lutions (17) are symmetric for a regressor equation of
dimension two. However, as the numerical example
below demonstrates, asymmetrical solutions can ap-
pear already for a third order equation.

Let Pd be an identity matrix. Further assume that the
excitation is not sufficient and the regressor vector is
of the form'(t) = [1 0 0℄T . Then it is easy to
check that there are stationary solutions to (4) and (5)
of the form P � = 24 1 0 00 1 �0 0 1 35 (18)

where� is any number. ClearlyjjP �jj is unbounded.
The above matrix is asymmetrical for� 6= 0.

Ending up the discussion on stationary solutions, it is
proved that all the stationary points of (4),(5) result in
one and the same Kalman gain.

Proposition 5.All the stationary pointsP �, yield the
same Kalman gainK(t) = Pd'(t).
Proof: See Appendix. 2

4. CONCLUSION

Stationary properties of a recently suggested windup
prevention method for recursive parameter estimation
are studied in the case of non-persistently exciting
data. A particular choice of the free term of the Ric-
cati equation suggested by the method imposes linear



dynamics on the difference Riccati equation and sim-
plifies its analytical analysis.

Generalizing a known result, it is shown that the re-
sulting Riccati equation canalwaysbe written as a
Sylvester equation. By a direct use of this parametriza-
tion, the manifold of all stationary solutions of the
Riccati equation is evaluated and demonstrated to in-
clude as well indefinite and non-symmetric matrices.
The corresponding Kalman gain is though unique at
each step.

When the excitation is persistent, the stationary point
is unique and equal to a pre-defined matrix.
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den. pp. 148–153.

Appendix A. PROOF OF PROPOSITION 1

First, consider the inverse ofA(X), that can be found
using the matrix inversion lemma as follows,A�1(X) = �I + r�1X��T ��1 (A.1)= I � r�1X� �1 + �T r�1X���1 �T= I � X��Tr + �TX�
Then define the scalars� = 'TPd' and � ='TP (t� 1)'. Starting from the equality0 = �P (t� 1)''TPd(�+ r(t))(� + r(t)) � �P (t� 1)''TPd(�+ r(t))(� + r(t))+ �P (t� 1)''TPd(�+ r(t))(� + r(t)) � �P (t� 1)''TPd(�+ r(t))(� + r(t))
some algebra results in the following0 = P (t� 1)''TPd� + r(t) � P (t� 1)''TPd�+ r(t)+ P (t� 1)'�'TPd(� + r(t))(� + r(t)) � P (t� 1)'�'TPd(� + r(t))(� + r(t))
Adding and subtractingPd to the equation above,
equation (4) can be rewritten as,P (t) = P (t� 1)� P (t� 1)''TP (t� 1)r(t) + �+ Pd''TPdr(t) + � + P (t� 1)''TPd� + r(t) � P (t� 1)''TPd�+ r(t)+ P (t� 1)'�'TPd(� + r(t))(� + r(t)) � P (t� 1)'�'TPd(�+ r(t))(� + r(t))+ Pd � Pd
The above expression can be formulated as a sum of
two matrix products andPd:P (t) = �P (t� 1)� P (t� 1)''TP (t� 1)� + r(t) ��I � Pd''T�+ r(t)�T��Pd � P (t� 1)''TPd� + r(t) ��I � Pd''T�+ r(t)�T + Pd= �I � P (t� 1)''T� + r(t) �P (t� 1)�I � Pd''T�+ r(t)�T��I � P (t� 1)''T� + r(t) �Pd�I � Pd''T�+ r(t)�T + Pd



Following equation (A.1), the bracketed matrices in
the products are the inverses ofAt(�) which concludes
the proof.

Appendix B. PROOF OF PROPOSITION 2

From Proposition 1 in (Medvedev, 2003; Medvedev,
2004) and sinceA�1t (P ) > 0 we have�(A�1t (P )) = � 11 + 
�T1 P�1 ; 1; : : : ; 1�
and �(A�1t (Pd)) = � 11 + 
�T1 Pd�1 ; 1; : : : ; 1�
A well-known result on the eigenvalues and eigenvec-
tors of the Kronecker product of matrices formulated
below is necessary for the analysis in the sequel.

Lemma 1.Let A 2 Rn�n andB 2 Rm�m. If � 2�(A) andx 2 Rn is a corresponding eigenvector ofA, and if� 2 �(B) andy 2 Rm is a corresponding
eigenvector ofB, then �� 2 �(A 
 B) and x 
y 2 Rnm is a corresponding eigenvector ofA
B.

Proof: See page 245 in (Horn and Johnson, 1991).2
Now consider the Kronecker product matrixN(Pd; P (t)).
From Lemma 1 the corresponding eigenvalues can be
calculated as (16).

Appendix C. PROOF OF PROPOSITION 3

From Proposition 1 in (Medvedev, 2003; Medvedev,
2004) it is known that the eigenvectors corresponding
to the unit eigenvalues ofA(X) are�i; i = 2; : : : ; n.
Now from Lemma 1 we can calculate the eigenvectors
corresponding to the zero eigenvalues ofN(Pd; P (t))
as xl = �i 
 �j ; i = 2; : : : ; n; j = 2; : : : ; n; l =1; : : : ; n� 1.

Appendix D. PROOF OF PROPOSITION 4

Consider the matrixN(Pd; P �), whereP � is the sta-
tionary solution to (8). Note thatN(Pd; P �) is time
variant due to its dependence on the regressor vector'(t).
Let the vectors�2(t); : : : ; �n(t) be the eigenvectors
corresponding to the zero eigenvalues ofU(t), span-
ning KerU(t) and let�1(t) be the eigenvector cor-
responding to the unit eigenvalue ofU(t), spanning
Im U(t).
Then by Proposition (3),P � can be written asP � = Pd + nXi=2 nXj=2 kij�i�Tj

for some scalarskij . Let �ij denote thejth element
in theith eigenvector. Then the above equation can be
rewritten as a sum of matrices,P � = Pd + [

nXi=2 nXj=2(kij�j1)�inXi=2 nXj=2(kij�j2)�i : : : nXi=2 nXj=2(kij�jn)�i ]
The columns ofP � � Pd must therefore lie in
KerU(t).
For a sufficiently exciting signal we have, according
to (15) thatrank [�1(t+ n� 1) : : : �1(t)℄ = n
Now considerP � � Pd at the time instantst =�; : : : ; � + n � 1. Since P � � Pd is constant its
columns must be in the intersection of the nullspacesT�+n�1t=� KerU(t).
At time t = � , sinceU = UT , Rn = KerU(�) ��1(�) and at timet = � + 1, Rn = KerU(� + 1) ��1(� +1). ThusRn = (KerU(�) \ KerU(� + 1))�
Im U(�)� Im U(� + 1). Proceeding in the same way
for t = � + 2; : : : ; � + n� 1 we getRn = �+n�1\t=� KerU(t)� �+n�1Mt=� �1(t) (D.1)

Due to the sufficiently exciting signal the direct sumL�+n�1t=� �1(t) = Rn, which means�+n�1\t=� U(t) = �
according to (D.1).

The columns ofP � � Pd can thus not lie in the same
nullspace fort = � : : : � + n � 1, which meanskij = 0, i = 2; : : : ; n; j = 2; : : : ; n.

Appendix E. PROOF OF PROPOSITION 5

Consider the Kalman gainK(t) = P (t)'(t) in a
stationary pointP � under insufficient excitationK(t) = P �'(t)
which using Proposition 4 can be rewritten asK(t) = Pd'(t) +0� nXi=2 nXj=2 kij�i�Tj 1A'(t)
SinceU(t) is symmetrical,Rn = ImU(t)�KerU(t).
Now, the eigenvectors�i; i = 2; : : : ; n spanKer U(t)
and'(t) = 
�1; 
 2 R spansIm U(t). Then'(t) and�i i = 2; : : : ; n are orthogonal andK(t) = Pd'(t)


