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Abstract: In this paper, the stabilizability problem for chaotic discrete-time
systems under the generalized delayed feedback control (GDFC) is addressed. It
is proved that 0 < det(I − A) < 2n+m is a necessary and sufficient condition
of stabilizability via m-step GDFC for an n-order system with Jacobi A. The
condition reveals the limitation of GDFC more exactly than the odd number
limitation. An analytical procedure of designing GDFC is proposed and illustrated
by an example. Copyright c©2005 IFAC
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1. INTRODUCTION

The delayed feedback control (DFC) proposed by
Pyragas (1992) is an important method in chaos
control and has been successfully applied to var-
ious systems (Just et al., 1997). The advantage
of the DFC is requiring no information of UPOs
except their periods. For chaotic discrete-time sys-
tems, Ushio used the DFC to stabilize unstable
fixed points and found a limitation, called odd
number limitation, which can be stated as follows:
if the system Jacobi about the target fixed point
has an odd number of real eigenvalues greater
than unity, then the system is not stabilizable
by DFC (Ushio, 1996). A similar limitation ex-
ists in control of chaotic continuous-time systems
(Nakajima, 1997). Nakajima and Ueda further
proved that the odd number limitation holds for
a generalized delayed feedback control including
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extended time-delayed auto-synchronization (So-
colar, et al., 1994), exponential DFC among others
(Nakajima and Ueda, 1998). In Tian and Chen
(2001), it was showed that the limitation is in-
herited in an observer-based dynamical DFC for
continuous-time systems.

The odd number limitation actually describes a
necessary condition for stabilizability via DFC.
The problem of finding necessary and sufficient
conditions has attracted much attention and re-
mained open for a long time. For the first-order
and second-order discrete-time systems, Ushio
obtained necessary and sufficient conditions us-
ing Jury’s stability test (Ushio, 1996). In Ushio
and Yamamoto (1998), Ushio and Yamamoto ex-
tended DFC to the nonlinear estimation case, and
reduced the stabilization problem to solving linear
matrix inequalities (LMIs). But the solvability of
the LMIs was not addressed.

In this paper, the stabilizability problem for
discrete-time systems under the generalized de-
layed feedback control (GDFC) is addressed. It is
proved that 0 < det(I−A) < 2n+m is a necessary



and sufficient condition of stabilizability via m-
step GDFC for an n-order system with Jacobi
A. This result shows that the upper bound in
the above condition can be enlarged by increasing
the number of delays in the feedback. In other
words, a system which can not be stabilized by
the conventional DFC may still be stabilized by
GDFC, while early results show that GDFC has
no advantage over the conventional DFC in over-
coming the odd number limitation (Nakajima and
Ueda, 1998). An analytical procedure of designing
GDFC is also proposed and illustrated by an ex-
ample.

2. NECESSARY AND SUFFICIENT
CONDITION FOR STABILIZABILITY VIA

GDFC

Let us consider an n-order nonlinear discrete-time
system described by

x(k + 1) = f(x(k), u(k)), (1)

where u(k) ∈ R is the control input, x(k) ∈ Rn is
the state, f : Rn×R → Rn is a smooth mapping.
In this paper we consider the generalized delayed
feedback control (GDFC)

u(k) =
n∑

i=1

pi[xi(k)−
m∑

j=1

λijxi(k −m− 1 + j)],(2)

where λij ∈ R, and satisfy
m∑

j=1

λij = 1, i = 1, · · · , n, (3)

and pi, i = 1, · · · , n, are control gains to be
designed. An equivalent form of (2) can be written
as

u(k) =
n∑

i=1

m∑

j=1

pij [xi(k)− xi(k −m− 1 + j)], (4)

which is a linear discrete-time version of the
GDFC discussed by Nakajima and Ueda for
continuous-time systems (Nakajima and Ueda,

1998). Indeed, if we let pi =
m∑

j=1

pij and λij =

pij/pi, then (4) is exactly (2).

Assume x∗ is the unstable fixed point of the
open-loop system, i.e., x∗ = f(x∗, 0). Write A =
Dxf(x∗, 0) and b = Duf(x∗, 0). Then the lin-
earized system of (1) around x∗ is

x(k + 1) = Ax(k) + bu(k), (5)

where x(k) = x(k)−x∗ ∈ Rn is the state variation
about the fixed point. The GDFC defined by (2)
can also be represented by state variation as

u(k) =
n∑

i=1

pi[xi(k)−
m∑

j=1

λijxi(k −m− 1 + j)].(6)

The aim of this paper is to find a necessary
and sufficient condition under which there exist
p = [p1, · · · , pm] and λij satisfying (3) such that
the closed-loop system composed by (5) and (6)
is asymptotically stable.

In this paper, we assume that system (5) is con-
trollable. In this case, by linear system theory
(Chen, 1984), system (5) can always be trans-
formed into the following canonical form:

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)
...
xn−1(k + 1) = xn(k)

xn(k + 1) =
n∑

i=1

aixi(k) + u(k)

(7)

Let y1(k) = x1(k − m), y2(k) = x1(k − m +
1), · · · , ym+n(k) = x1(n + k − 1) = xn(k). Then
the closed-loop system (7) with (6) can be written
as

y1(k + 1) = y2(k),
...

yn+m−1(k + 1) = yn+m(k),

yn+m(k + 1) =
n∑

i=1

(ai + pi)ym+i(k)

−p1λ11y1

−(p2λ21 + p1λ12)y2

...
−(pnλn1 + pn−1λ(n−1)2 + · · ·+ p1λ1n)yn

...
−(pnλn(m−n+1) + · · ·+ p1λ1m)ym

−(pnλn(m−n+2) + · · ·+ p2λ2m)ym+1

...
−pnλnmyn+m−1.

(8)

For the simplicity of statement, here and below,
we give the matrix formulae only for the case when
m ≥ n. But all the discussions and results hold for
the case when m < n. The difference between two
cases is in notations of the subscripts of matrix
elements. The characteristic polynomial of system
(8) is

g(s) = sn+m + gn+m−1s
n+m−1

+ · · ·+ g1s + g0, (9)

where



g0 = p1λ11,
g1 = p2λ21 + p1λ12,
...
gn−1 = pnλn1 + pn−1λ(n−1)2 + · · ·+ p1λ1n,
...
gm = pnλn(m−n+1) + · · ·+ p1λ1m,
gm+1 = pnλn(m−n+2) + · · ·+ p2λ2m − a1,
...
gn+m−2 = λnmpn − pn−1 − an−1,
gn+m−1 = −pn − an.

(10)

Clearly, the system (8) is asymptotically stable if
and only if all the zeros of (9) can be rendered
in the unit circle of the complex plane. To this
end, we suppose the desired stable characteristic
polynomial of (n + m)-order is

d(s) = sn+m + dn+m−1s
n+m−1 + · · ·+ d1s + d0.(11)

Comparing coefficients of (9) with those of (11)
we can get




λ11 0
λ12 λ21

...
. . .

λ1n · · · · · · · · · λn1

...
...

λ1m · · · · · · · · · λn(m−n+1)

−1 λ2m · · · · · · λn(m−n+2)

. . . . . .
...

−1 λnm

0 −1







p1

p2

p3

...
pn−1

pn




=




d0

d1

...
dn−1

...
dm−1

dm + a1

...
dn+m−2 + an−1

dn+m−1 + an




. (12)

In both sides of the above equation, we carry out
such row transformations: add row 1 to row 2,
then add the new row 2 to row 3, · · ·. Finally,
taking Eq.(3) into account we get




λ11 0
λ11 + λ12 λ21

...
. . .

n∑

i=1

λ1i · · · · · · · · · λn1

...
...

1 · · · · · · · · ·
m−n+1∑

i=1

λni

0 1 · · · · · ·
m−n+2∑

i=1

λni

. . . . . .
...

0 1
0 0







p1

p2

p3

...
pn−1

pn




=




d0

d0 + d1

...
n−1∑

j=0

dj

...
m−1∑

j=0

dj

m∑

j=0

dj + a1

...
n+m−2∑

j=0

dj +
n−1∑

i=1

ai

n+m−1∑

j=0

dj +
n∑

i=1

ai




. (13)

The linear equations (13) has solutions pi(i =
1, 2, · · · , n) only if

n+m−1∑

j=0

dj +
n∑

i=1

ai = 0. (14)

Since det(I − A) = 1 −
n∑

i=1

ai, and d(1) =

1 +
n+m−1∑

j=0

dj . Thus, Eq.(14) can be equivalently

rewritten as

det(I −A) = d(1). (15)

So we have actually proved the necessity part of
the following theorem.

Theorem 1. For any (n + m)-order polynomial
given by (11), there exist p and λij satisfying
(3) such that the characteristic polynomial of the
closed-loop system (8) is exactly (11) if and only
if



n+m−1∑

j=0

dj +
n∑

i=1

ai = 0,

or equivalently

det(In −A) = d(1).

Proof. We need only to complete the proof by
showing the sufficiency, i.e., Eq.(12) has solutions
pi(i = 1, 2, · · · , n), λij(i = 1, · · · , n, j = 1, · · · ,m),
if Eq.(14) holds. We let

λij = 0, for i = 2, · · · , n; j = 1, · · · ,m− 1. (16)

Then, under condition (14), Eq.(12) is simplified
as




λ11 0
λ12 0
...

. . .
λ1n · · · · · · · · · 0
...

...
λ1m · · · · · · · · · 0
−1 λ2m · · · · · · 0

. . . . . .
...

−1 λnm







p1

p2

p3

...
pn−1

pn




=




d0

d1

...
dn−1

...
dm−1

dm + a1

...
dn+m−2 + an−1




. (17)

It is easy to verify that

p1 =
m−1∑

j=0

dj ,

λ1j = dj−1/p1, j = 1, · · · ,m
λim = 1, i = 2, · · · , n,
pi = dm+i−2 + ai−1 + pi−1, i = 2, · · · , n,

(18)

is a solution of Eq.(17), which makes the charac-
teristic polynomial of the closed-loop system (8)
equal to (11). The theorem is thus proved. 2

Remark 1. In the design of GDFC, polynomial
d(s) in (11) is determined by the desired poles of
the closed-loop system. Under a given polynomial
d(s), Eq.(16) and (18) give an analytical design
of the controller (6) realizing the desired pole
assignment.

Now let us give a lemma which is useful in the
proof of our next theorem.

Lemma 1. If all the roots of the real-coefficient
m-order polynomial h(s) = sm+hm−1s

m−1+· · ·+
h1s+h0 lie in the unit circle of the complex plane,
then

0 < h(1) = 1 +
m−1∑

i=0

hi < 2m. (19)

Proof. When m = 1, we have h(s) = s− r, where
r = −h0 is the root. Obviously,

0 < h(1) = 1− r < 2, (20)

if |r| < 1. The lemma holds.

When m = 2, the polynomial generally has two
conjugate roots denoted by r1 = a + bj and
r2 = a− bj. Simple calculation yields

h(s) = (1− r1)(1− r2)

= [1− (a + bj)][1− (a− bj)]

= 1 + a2 + b2 − 2a.

If r1, r2 lie inside the unit circle, then a2 + b2 < 1,
−1 < a < 1. Thus we have

0 < h(1) = 1 + a2 + b2 − 2a < 22. (21)

The lemma holds .

Now let us consider the general case when h(s)
have m roots denoted by ri, i = 1, · · · , m. h(s)
can always be written as

h(s)

=
m1∏

i=1

[s− (ai + bij)][s− (ai − bij)]
m−2m1∏

j=1

(s− rj),

where 0 ≤ m1 ≤ m, rj denote real roots and
ai ± bij, i = 1, · · · ,m1, denote conjugate complex
roots of the polynomial. Therefore,

h(1)

=
m1∏

i=1

[1− (ai + bij)][1− (ai − bij)]
m−2m1∏

j=1

(1− rj)

=
m1∏

i=1

(1 + a2
i + b2

i − 2ai)
m−2m1∏

j=1

(1− rj).

If ri, i = 1, · · · ,m, all lie inside the unit circle,
then, by (20) and (21), we immediately get

0 < h(1) < 22m12m−2m1 = 2m.

The lemma is proved. 2

Theorem 2. Assume (A, b) is controllable. There
exists a generalized delayed feedback control (6)



such that the closed-loop system composed by (5)
with (6) is asymptotically stable if and only if

0 < det(In −A) < 2n+m. (22)

Proof. Without loss of generality, let the system
be of the form (7). We consider the closed-loop
system (8).

(Necessity) Assume there exists p such that (8)
is asymptotically stable. Then all the roots of the
characteristic polynomial of system (8) lie inside
the unit circle. Let the characteristic polynomial
of (8) be (11). Then Theorem 1 and Lemma 1
imply (22).

(Sufficiency) From (22), there exists η ∈ R such
that

0 < det(In −A) < η < 2n+m. (23)

Set

θ = 1−
(η

2

)1/(n+m−1)

,

β = 1− 2 det(I −A)
η

.
(24)

By (23), it is easy to check that −1 < θ < 1,
−1 < β < 1. Let

d(s) = (s− θ)n+m−1(s− β). (25)

Then we have

d(1) = (1− θ)n+m−1(1− β)

=
η

2
· 2 det(I −A)

η

= det(I −A). (26)

Therefore, by Theorem 1, there exists p such
that the characteristic polynomial of (8) is (25),
namely, there exists p such that (8) is asymptoti-
cally stable. 2

Remark 2. Eq. (23), (24) and (25) actually give a
method for determining a stable polynomial d(s)
satisfying (14). Combining these equations with
Eq. (16) and (18), one can analytically design a
GDFC to locally asymptotically stabilize nonlin-
ear system (1).

Remark 3. The assumption that the system
is in the controllable canonical form (7) does
not impact the generality of the results, be-
cause, by linear system theory, any single-input
controllable system (A, b) can be converted into
(T−1AT, T−1b) so that the equivalently trans-
formed system is in the controllable canonical
form. Obviously, we have det(I − A) = det(I −
T−1AT ). So Theorem 2 holds for all controllable
systems.

Remark 4. If A has an eigenvalue equal to 1
or has an odd number of real eigenvalues greater
than 1, then det(In − A) ≤ 0. Thus Theorem
2 implies that there does not exist p such that
(8) is asymptotically stable, which is just the
odd number limitation appeared in Ushio (1996).
However, the upper bound 2n+m for det(I−A) has
not been revealed before. The upper bound can be
enlarged by increasing the number m of delays
in the feedback (2). In other words, a system
which can not be stabilized by the conventional
DFC may still be stabilized by GDFC, while
early results show that GDFC has no advantage
over the conventional DFC in overcoming the odd
number limitation (Nakajima and Ueda, 1998).

Example 1. As a numerical example, let us
consider a simple chaotic system described by

x(k + 1) = ax(k)(1− x2(k)) + u(k), (27)

where a = −3 (see, e.g., (Sprott, 2003)). The
linearized system around the fixed point xf = 0 is

x(k + 1) = ax(k).

So det(I − A) = 1 − a = 4. By Theorem 2, the
system is not stabilizable under one-step delayed
feedback

u(k) = p(x(k)− x(k − 1)).

However, since det(I − A) < 21+2, it can be
stabilized by the following GDFC.

According to Remark 2, the design procedure is
sketched as follows.

By Eq. (23) we choose η = 6 so that

4 = det(I −A) < η < 23

holds. According to (24) we can set

θ = 1−
(η

2

)1/2

= 1−
√

3,

β = 1− 2 det(I −A)
η

= 1− 8/6 = −1/3.

Now by Eq.(25) we get a stable polynomial as

d(s) = (s− θ)2(s− β)

= s3 + (2
√

3− 5
3
)s2 + (

10
3
− 4

3

√
3)s

+
4
3
− 2

3

√
3.

From (18) we have

p1 = d0 + d1 =
4
3
− 2

3

√
3 +

10
3
− 4

3

√
3

=
14
3
− 2

√
3,
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Fig. 1. Controlled behavior of the state in the
example.

λ11 = d0/p1 =
2−√3
7− 3

√
3
,

λ12 = d1/p1 =
5− 2

√
3

7− 3
√

3
.

So the feedback control is designed as

u(k) =
(

14
3
− 2

√
3
)

×
(

x(k)−
(

2−√3
7− 3

√
3
x(k − 2)

+
5− 2

√
3

7− 3
√

3
x(k − 1)

))
. (28)

Since stabilization is guaranteed only in a neigh-
borhood of the fixed point, we adopt the following
small control law:

us(k) =
{

u(k), if u(k) < ε,
0, otherwise, (29)

where ε is a sufficiently small positive number.
Shown in Fig. 1 is the behavior of the controlled
system under (29) with ε = 0.002.

u(k) = p1(x(k)− (λ11x(k − 2) + λ12x(k − 1))),

λ11 + λ12 = 1.

3. CONCLUSION

In the paper we have considered the stabilization
of single-input chaotic discrete-time systems by
the generalized delayed feedback control. A nec-
essary and sufficient condition for stabilizability
via GDFC has been obtained, which includes the

odd number limitation as a special case. It is
also shown that by adding the delay steps in the
GDFC, the upper bound of the limitation can be
arbitrarily enlarged.
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