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Abstract: In this paper, we investigate the stochastic output feedback control problem for a 
class of stochastic non-linear time-delay systems. The aim of this paper is to design a linear, 
delayless, and independent - uncertainty control for all admissible uncertainties. The designed 
control ensures stochastically exponential stability in the mean square, independent of the 
time-delay. The sufficient conditions for the existence of such a control are proposed in terms 
of certain quadratic matrix inequalities. The simulations of applying the proposed method to a 
stochastic time-delay system subject to non-linear uncertainties are shown in a simple 
example. Copyright © 2005 IFAC 
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1. INTRODUCTION Recently, several criteria of input-to-bounded state 

(IBS) stabilization and bounded-input-bounded-
output (BIBO) stabilization in mean square for non-
linear and quasi-linear stochastic control systems 
with time-varying uncertainties has been investigated 
by (Fu and Liao, 2003), also, another stability 
concepts in the mean-square sense such as mean-
square stability (MSS) and the internal mean-square 
stability (IMSS) have been studied by (Lu and 
Skelton, 2002). 

             
Most of the systems, which are encountered in 
control engineering, contain various non-linearities 
and are affected by random disturbance signals. Non-
linear systems with time-delay constitute basic 
mathematical models of real phenomena, for instance 
in biology, mechanics and economics, see 
(Niculescu, et al., 1997; Hale, 1997). Control of 
time-delay systems has been a subject of great 
practical importance, which has attracted a great deal 
of interest for several decades. On the other hand, it 
turns out that the delayed state is very often the cause 
for instability and poor performance of systems. 
Moreover, considerable attention has been given to 
both the problems of robust stabilization and robust 
control for linear systems with unavoidable time-
varying parameter uncertainties in modelling 
dynamical systems and certain types of time-delays 
by (Malek-Zavarei and Jamshidi, 1987). 

 
The stabilization of stochastic systems with 
multiplicative noise has been studied since the late 
sixties, particularly in the context of linear quadratic 
optimal control, see (Mclane, 1971; Willems, 1983). 
More recently a number of papers have been 
published which deal with robust stability and robust  
stabilization problems in the spirit of control or 
the stability radius approach. Stochastic stability 
analysis and disturbance attenuation for a class of  
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discrete-time non-linear stochastic systems has been 
investigated by (Cao and Hu, 2001). Wang, et al., 
(2001) proposed the robust reliable control problem 
for a class of non-linear time-delay stochastic 
systems and their attention were focused on the 
design of linear state feedback memoryless 
controllers. 

It is assumed that all the elements of )(tΞ are 
Lebesgue measurable and 1 , , , are known 
real constant matrices of appropriate dimensions that  

M 2M 1N 2N

specify how the uncertain parameters in Ξ  enter 
the nominal matrices

)(t
A , , C . The parameter 

uncertainties 
dA

)(tA∆ , )(tAd∆ ,  are said to be 
admissible if both (4) and (5) hold. 

)(tC∆
 
In the sequel of the work by (Wang, et al., 2001), in 
this paper, we consider the stochastic control 
problem for a class of stochastic non-linear time-
delay systems. A state-space model with real time-
varying norm-bounded parameter uncertainties and 
non-linear disturbance meeting the boundedness 
condition describes the class of the stochastic time-
delay systems. Here, attention is focused on the 
design of stochastic output feedback controller 
which for all admissible uncertainties as well as non-
linear disturbances ensures stochastically 
exponentially stable in the mean square, independent 
of the time- delay. The sufficient conditions for the 
existence of such a control is proposed in terms of 
certain quadratic matrix inequality. 

 
Assumption 1 (Wang and Burnham, 2001): There 
exists a known real constant matrix such 
that 
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The stochastic output feedback control problem that 
we address in this paper is of the form 
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where  and the constant matrices of 

,  and C  are controller 
parameters to be designed. By using the control (6) 
and (1-3), we obtain the following augmented closed-
loop system: 
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2. PRELIMINARIES AND PROBLEM 
FORMULATION  
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Consider a class of non-linear uncertain continuous-
time state delayed stochastic system described by 
(Wang, et al., 2001; Wang and Burnham, 2001), 

where 
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together with the measurement output 
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== . where is the state, u  is the control 

input,  is the measurement output, 
 is the unknown non-linear 

disturbance  input,  is the unknown state delay, 
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ϕ is the continuous vector valued initial function 
and is a scalar Brownian motion defined on the 
probability space  .  are 
known constant matrices with appropriate 
dimensions. , ,  are real-valued 
time-varying matrix functions representing norm-
bounded parameter uncertainties and satisfy 

)(t

A∆

w
),0 P≥ ,A

)(tC∆

}{,( F tt

) )(tAd

,FΩ

∆

1,, EBAd

(t

Next, observe the augmented system (7) and let 
);( ζtx  denote the state trajectory from the initial data 

)()( θζθ =x  on 0≤≤− θh  in . 
Clearly, the system (7) admits a trivial solution 
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0)0;( ≡tx corresponding to the initial data 0=ζ . We 
introduce the following stability and stabilizability 
concepts. 
 
Definition 1 (Wang, et al., 2001): For the system (7) 
and every , the trivial solution is 
asymptotically stable in the mean square if 
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 and is exponentially stable in the mean square if 
there exist constants 0>α and 0>β  such that where is an unknown time-varying matrix 

function satisfying 
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Definition 2 (Wang, et al., 2001): we say that the 
system (1-3) is exponentially stabilizable in mean 
square if, for every , there exists 
a linear stochastic control law (6) such that the 
resulting closed-loop system is exponentially stable 
in mean square. 
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Fix  arbitrarily, and write )];0,([ 22
0

n
F hL ℜ−∈ζ

)() tx;(tx =ζ . We define the Lyapunov function 
candidate 

∫ −
+=Υ

t

ht

TT dssxQsxtxPtxttx )()()()()),((               (13)  
The objective of this paper is to design an 
exponential control for the stochastic uncertain non-
linear time-delay system (1-3). More specifically, we 
are interested in seeking the control parameters 

,  and  such that for all admissible parameter  KA KB KC

where P  is the positive definite solution to the 
matrix inequality (9) and  is defined by 0>Q
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 uncertainties , , and the non-linear 

disturbance input , the augmented system (7) 
is exponentially stable in mean square, independent 
of the unknown time-delay .  
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trajectory is obtained as 
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3. MAIN RESULTS 
 
We first give the following lemma, which will be 
used in the proof of our main results.  
Lemma 1 (Zhou and Khargonekar, 1988):  For any 
matrices  X  and  Y  with appropriate dimensions and 
for any constant 0>η , we have: 

.1 YYXXXYYX TTTT

η
η +≤+                       (8) 

 
 Now, by Lemma 1 and assumption 1, it is trivial to 

show that for any positive scalars of 4321 ,,, εεεε  the 
following matrix inequalities hold: 

3.1 Stochastic Stability Analysis 
 
In this section, assuming that the stochastic control 
structure is known and we will study the conditions 
under which the closed-loop system is stochastically 
exponentially stable in the mean square. The 
following theorem will play a key role in the stability 
analysis of closed-loop system and design of the 
expected stochastic control. 
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Theorem 1: Let the stochastic control parameters , 

 and  be given. If there exists positive scalars 
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Holds, then the augmented closed-loop (7) is 
exponentially stable in the mean square for all 
admissible parameter uncertainties and independent 
of the unknown time-delay . h

Then, noticing the definition (14), substituting (16-
19) into (15) results in 
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Proof : For simplicity, we make the definitions 
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and then the augmented closed-loop system (7) can 
be rewritten as  

     



Then, (25) is solvable for Χ  if and only if Then, according to the inequality (9), we find 
0<Π .                                                                     (22) 0,0 <ΜΜ<ΝΝ ⊥⊥⊥⊥ TTTTTT HH  

 here, if  Σ  and rank  mn×ℜ∈ r=Σ , the orthogonal 
complement  is defined as a possibly nonunique ⊥Σ

nrn ×− )(   matrix with rank rn − , such that .  0=ΣΣ⊥

Consequently, the inequalities (20) and (22) mean 
that the non-linear uncertain stochastic time-delay 
augmented closed-loop system (7) is asymptotically 
stable (in the mean square) by the stochastic control 
law (6).  

By using the Schur - complement formula, inequality 
(9) is equivalent to 
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square) of the augmented closed-loop system (7) can 
be proved by making some standard manipulation on 
(20), see (Mao, 1996). Let β  be the unique root of 
the equation 
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where Π  and  are defined, respectively, in (21) and 
(14) and 

Q

P  is the positive definite solution to (9) and 
 is the unknown time-delay. Then, by (Wang and 

Burnham, 2001), we have: 
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Consider the following partition of P and 1−P : 
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 such that 
Notice that, according to (24), the definition of 
exponential stable in Definition 1 is satisfied and this 
complete the proof of Theorem 1.   
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expressions (7), the inequality (26) becomes: 

×ℜ∈The result of Theorem 1 may be conservative due to 
using of inequalities (16-19). However, such 
conservativeness can be significantly reduced by 
appropriate choices of the parameters 4321 ,,, εεεε  in a 
matrix norm sense.    

[ ] 0: 5,...,1, <Γ=Γ =jiij                                                    (28) 

where the elements of the symmetric matrix  are Γ

22
1

222max
1

411
1

3

1
111

)( NNMMHHNN

AACMBMBCRARA
TTTT

d
T
dK

TT
K

TT

−−−

−

+++

++++=Γ

ελεε

ε

K
T
K

T
K

T CBRRBCAMMA +++=Γ
~

12  

 
 
3.2 Stochastic Control Design  
 R2
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13 ε=Γ  
This subsection is devoted to the design of stochastic 
control parameters , and  by using the 
result in Theorem 1. We will show that the design of 
stochastic control parameters problem can be solved 
via the resolution of matrix inequalities. Our 
approach follows the one developed by (Gahinet and 
Apkarian, 1994) for the deterministic case. The key 
tool, which makes this possible, is the stochastic 
version of the Bounded Real Lemma. From 
deterministic  control theory we will need the 
following, so called, Projection Lemma.  
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The condition (28) can be expressed as: Lemma 2 (Xu and Chen, 2002):  Given a symmetric 
matrix  and two matrices  and 
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In addition, when (34), (36) and  (38) are satisfied, 
-order controller (6) corresponding to a feasible 

solution can be obtained by using the result of matrix 
inequality (29). Then, we obtain the following result: 
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Theorem 2: If there exist positive scalars 

4321 ,,, εεεε such that the quadratic matrix inequalities  
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such that the augmented closed-loop system (7) is 
exponentially stable in the mean square for all 
admissible parameter uncertainties, and the non-linear 
disturbance input  and independent of the 
unknown time-delay .  
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Based on the Projection lemma, it follows that (29) 
has a solution if and only if 
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3.3 Example 
 
Consider a second-order non-linear stochastic system 
with time-delay in the state as 
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 is the state vector and the 
uncertainty terms ; i =1, 2, are assumed to be 
norm-bounded such that the matrix H  has been 
considered as . }3.0,4.0{diagonal

Using the Schur - complement formula, it is easy to 
see that (30) and (31) are equivalent to 
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Consider 2=h  seconds as the time-delay parameter 
and  is the order of stochastic feedback control 
(6). The required stochastic feedback control (6) is 
obtained according to Theorem 2. Robust stability of 
the dynamics in the presence of disturbance has been 
depicted in Figure 1. Therefore, we conclude that 
system (27) can be stabilized by the control law (6) 
which has been depicted in Figure 2.  
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According to the (1,1) block of P and 1−P  in (27), we 
have 

     



 

     

 
Fig. 1. Regulation of state dynamics under a delay of 

2 seconds  
 

 
 
Fig. 2. Control input signals 
 
 

4. CONCLUSION 
 
In this paper, we have studied the problem of 
stochastic output feedback control for a class of non-
linear time-delay stochastic systems. An LMI 
approach has been developed to design a linear, 
delayless, uncertainty- independent control such that  
for all admissible uncertainties as well as non-linear 
disturbances ensures stochastically exponentially 
stability in the mean square, independent of the time- 
delay.  
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