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Abstract: The problem of medium to long term sales forecasting raises a number of re-
quirements that must be suitably addressed in the design of the employed forecasting 
methods. These include long forecasting horizons (up to 52 periods ahead), a high num-
ber of quantities to be forecasted, which limits the possibility of human intervention, as 
well as frequent introduction of new articles (for which no past sales are available for pa-
rameter calibration) and withdrawal of running articles. The problem has been tackled by 
use of a modified Holt-Winters method as well as Feedforward Multilayer Neural Net-
works (FMNN) applied to sales data from two German companies. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
Sales forecasting over a sufficiently long future time 
horizon is an important prerequisite for efficient pro-
duction planning and a solid basis for company 
policy decisions. A number of efficient forecasting 
algorithms with different levels of complexity have 
been developed and tested in the past. Most method 
assessments and comparisons, however, address the 
problem of short-term or even one-step-ahead fore-
casting (see, e.g. Makridakis et al., 1982; Gaynor and 
Kirkpatrick, 1994; Lachtermacher and Fuller, 1995). 
A hybrid approach combining long-term with short-
term forecasts employing the Holt-Winters method 
was investigated by Rajopadhye et al. (1999). The 
forecasting methods to be employed should be able 
to operate largely autonomously, because human su-
pervision and intervention is hardly possible in case 
of thousands of article sales to be forecasted. 
 
The well known Holt-Winters method (Chatfield, 
1978) is suitably modified for long-term forecasting, 
and various Feedforward Multilayer Neural Network 
(FMNN) approaches are also proposed for the same 
problem. Both groups of methods as well as combi-
nations thereof are applied to various kinds of 
articles, group sales, and total sales from two Ger-

man companies (a total of 195 time-series are used) 
to assess and compare their forecasting performance 
and their suitability in view of the above require-
ments. 
 
FMNN-based prediction has recently gained remark-
able popularity due to the possibility to describe 
complex nonlinear interrelationships within a rela-
tively convenient black-box approach (Chakraborty 
et al., 1992; Yao, 1999). FMNN methods have been 
increasingly applied to prediction problems during 
the last decade (Chakraborty et al., 1992; Cottrell, et 
al., 1995; Lachtermacher and Fuller, 1995; Bunn, 
2000). Their basic advantage is that they may capture 
the unknown nonlinear structure of the process to be 
modelled. Their basic disadvantages are the high 
number of parameters to be calibrated and the black-
box approach that renders the plausible interpretation 
of the modeling structure very difficult and excludes 
the possibility of ad-hoc parameter choice. 
 
 

2. AVAILABLE DATA 
 
A total of 195 time-series is used to test and compare 
the various versions of Holt-Winters and FMNN-
based predictors. All time-series represent sales 
quantities from two industrial firms, namely the toy 



 

     

Table 1 Average of seasonality correlation factor 
Group D1 D2 D3 D4  

sr  0.29 0.36 0.06 0.016 

max rs 0.53 0.45 0.18 0.08 
min rs -0.03 0.26 -0.07 0.0  
Group D5 D6 D7 D8  

sr  0.25 0.48 -0.19 0.02 

max rs 0.56 0.48 0.27 0.18 
min rs -0.13 0.48 -0.51 -0.08  
 
producer sigikid (sk) and a wire-harness production 
factory for trucks owned by DaimlerChrysler (DC). 
All available time-series extend over the years 1997- 
1999 on a weekly base. For sk-data we have, for each 
time-series, 52 values for 1997, 52 values for 1998, 
and 40 values for 1999, while DC-data cover, for 
each time-series, 52 values for each of the three  
 
years. For a better analysis of results, the 195 time-
series are assigned to the following 8 data groups:  

D1: 60 time-series of sales numbers for 60 ordinary 
sk-articles with various average sales numbers . 
D2: 4 time-series of sales values (in german DM) for 
4 sk groups of articles with various average values.  
D3: 10 time-series of sales numbers for sk-articles 
which were withdrawn from production during the 
period 1997-1999. 
D4: 5 time-series of sales numbers for sk-articles 
which were first introduced within the period 1997-
1999. 
D5: 100 time-series as in D1 but for DC-articles. 
D6: 1 time-series of sales numbers for a DC-group of 
articles. 
D7: 10 time-series as in D3 but for DC-articles. 
D8: 5 time-series as in D4 but for DC-articles. 
 
The available data display some kind of more or less 
pronounced periodicity of the time-series over the 
time span of the year (i.e. over 52 weeks). This pe-
riodicity reflects the yearly seasonality of sales that 
may depend on annual fairs, end-of-year or summer 
holidays, etc. Assume a weekly time-series Yt, 
t=1,…,52, over a year, with average value  
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The seasonality factors St, t=1,…,52, for the weeks 
of that year are then defined as St = Yt/L. For each 
time-series from D1-D8, the corresponding seasonal-
ity factors 1997

tS  and 1998
tS  , t=1,…,52, for the years 

1997 and 1998, respectively, may be calculated. To 
avoid later difficulties, St = 0.1 is set whenever a 
value Yt≤0 is encountered in the data (negative values 
correspond to very limited article returns).  In order 
to calculate a practical index for the strength of sea-
sonality, a simple correlation formula is applied to 
the 1997 and 1998 seasonality factors for each time-
series as following 
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where rs is the seasonality correlation factor. The 
higher rs is for a particular time-series, the stronger 
the seasonality pattern. A value of close to zero indi-
cates no seasonality while rs<0 indicates negative 
seasonality (pathological cases). 
 
Table 1 provides the averages of seasonality factors 
for each group D1-D8 as well as the corresponding 
maximum and minimum values. Most ordinary time-
series, belonging to the groups D1, D2, D5, D6, have 
quite strong seasonality. Most time-series of articles 
that are either withdrawn or introduced within the 
1997-1998 period (groups D3, D4, D7, D8) have 
rather low or even negative seasonality correlation 
factors. 
 
 

3. FORECASTING METHODS USED 
 
3.1 The Modified Holt-Winters Method 
 
The Holt-Winters method (Makridakis and Wheel-
right, 1978) utilizes simple exponential smoothing to 
estimate the values of three basic components of a 
time-series: the level (average value), the trend, and 
the seasonality. The basic equations that are applied 
at each update period t = 1, 2, … are 
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forecast: MmSmbLF mstttmt ,...,1,)( =+= +−+ (6) 
where s is the period of the seasonality (here s = 52), 
Yt is the current value of the time-series, Lt denotes 
the level of the series (yearly average), bt denotes the 
trend, St is the seasonal component, and Ft+m is the 
forecast for m=1,…, M, with M the forecasting hori-
zon. In our case, we have M=52 for data groups D1-
D4 and M=22 for D5-D8, in accordance with the 
needs of the corresponding companies. 
 
In order to avoid unrealistic over-prediction, the lin-
ear-trend forecasting equation (6) may be modified 
as follows 
 mtttmt SmbLF ++ += )(   (7) 
to forecast the future sales numbers. By square-
rooting the m index, we obtain a sub-linear trend ap-
proach which leads to a more conservative trend 
extrapolation. 
 
 
3.2 FMNN Predictors 
 
A FMNN consists of several simple units, called neu-
rons, that are organised into a number K of layers 
(Fig. 1) including an input layer, an output layer, and 
several hidden layers. Each hidden layer k contains a 
number Nk of neurons. The input and output layers 
have no neurons but they have as many entries as in-
put and output variables, respectively, i.e. N1 = n and 
NΚ = p. The number of hidden layers and the number 
of neurons for each hidden layer may be chosen 
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Fig. 1. The general FMNN structure. 
 
freely. Each neuron i of each layer k is connected 
with each neuron j of layer k+1, except for the output 

layer. A corresponding weight k
ijw  is assigned to 

each connection between neurons of consecutive lay-
ers. Each layer, except for the input and output 
layers, has an extra neuron (threshold), which con-
nects with each neuron of the next layer. 
 
The weights related to these extra neurons are fixed  

in this paper such that, if x1=…=xn=0, the outputs 
y1=…=yp=0, whatever the values of the other 
weights. Each neuron’s input is a linear combination 
of the previous-layer’s neuron outputs, and each neu-
ron’s output is produced by the logistic function. 
 
In the application of FMNN to forecasting, all quan-
tities known at time t (i.e. the current and past time-
series values Yi, i=t,t-1,…,t-n+1) up to a depth n are 
used as inputs to the FMNN while the future (fore-
casted) values Ft+i, i=1,…,M, are the FMNN’s 
outputs. In our approach, the seasonality factors St 
are estimated via a simple smoothing while the de-
seasonalised current and past sales are used as 
FMNN-inputs to produce de-seasonalised future 
sales. The FMNN predictors are not designed to pro-
duce directly all M required forecasts but just 4 
forecast values Ft+m, e.g. for m = 1, 4, 26, 52, while 
the rest of the forecasts are produced from these val-
ues via linear interpolation. 
 
Note that in all FMNN-based prediction approaches 
to be presented in this section, a normalisation is ap-
plied to the corresponding FMNN inputs and outputs 
so that they don't exceed the range [ 0, 1]. It was 
found that a suitable normalisation parameter for 
each time-series equals 15 times the average weekly 
sales of 1997-1998. 
 
Four distinct versions of this FMNN-based predic-
tion are investigated: 
Version N.1: There are 4 inputs to the FMNN, 
namely the four last (de-seasonalized, normalized) 
sales numbers Yt, Yt–1, Yt–2, Yt–3. The FMNN’s hidden 
layer includes only one neuron, hence we have a 4-1-
4 structure with 8 free weights. 
Version N.2: Same as version N.1, but the inputs are 
now Yt, Yt–2, Yt–4, Yt–6 , to cover a longer past period.  
Version N.3: Same as version N.1 but with two neu-
rons in the hidden layer, leading to a 4-2-4 structure 
with 16 free weights. 
Version N.4: Same as version N.2 but with two neu-
rons in the hidden layer, leading to a 4-2-4 structure 
with 16 free weights. 

 
Because FMNN are nonlinear universal appro-
ximators, we may introduce a hybrid FMNN-based 
approach, whereby we keep the smoothing equations 
(3)-(5) of the Holt-Winters method (with ad-hoc pa-
rameters α=β=0.1 ) to produce the current level Lt, 
trend bt, and seasonality St, and apply subsequently a 
FMNN, instead of the extrapolation equation (6) to 
produce the forecasts Ft+m (m = 1,4,18,22 for data 
groups D5-D8). A total of 4 versions for this hybrid 
approach are considered: 
Version H.1: There are 2 inputs to the FMNN, 
namely the (normalized) Lt, bt; one hidden neuron; 
free threshold weights; leading to a 2-1-4 structure 
with 10 free weights. 
Version H.2: Same as version H.1 but with fixed 
threshold weights leading to 6 free weights. 
Version H.3: Same as version H.2 but with two hid-
den neurons, leading to a 2-2-4 structure with 12 free 
weights. 
Version H.4: There is one input to the FMNN, 
namely the (normalized) bt; one hidden neuron, lead-
ing to a 1-1-4 structure with 5 free weights. 
 
 

4. CALIBRATION OF PARAMETERS 
 
4.1 Parameter Calibration for the Holt-Winters 

Method 
 
The calibration phase considers only the parameters 
α, β of equations (3), (4). Because the seasonality 
factors St, t=1,…,52, are available only for two years, 
a veritable calibration of the parameter γ cannot be 
performed. For this reason, equation (5) and the pa-
rameter γ are not considered in the calibration.  
 
The available calibration data of sales numbers cover 
two years (1997, 1998), i.e., a total of 104 weeks. 
The real available data are denoted Yt, t=1,…,104. 
Using (3), (4) and (6) or (7) at each time t, the fore-
casts Ft+m, m=1,…,52, t=1,…,104 – m, may be 
produced for a given set of parameter values α, β. 
The optimisation problem formed, attempts to spec-
ify those values of α, β that minimize the following 
prediction accuracy criterion  
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The overall criterion J is the average relative mean 
quadratic error (ARMQE). We will refer to this over-
all criterion as the prediction accuracy. The 
optimisation method used to minimise (8) with re-
spect to α, β is exhaustive search in steps of 0.01 
within the admissible range of [0, 1]. Table 2 pro-
vides the averages J  of the achieved calibration 
accuracy (8) for each data group in the sub-linear 
trend case. Moreover, the best and worst achieved 
calibration accuracy within each data group is also 
displayed. It may be seen that results range from 
good to excellent for data groups D1, D2, D5, D6 of 
ordinary time-series while the calibration accuracy is 
rather mixed for groups D3, D4, D7, D8. 



 

     

Table 2 Calibration accuracy results, sub-linear trend 
Group D1 D2 D3 D4  
J  0.61 0.53 2.85 2.25 
min J 0.3 0.38 0.41 0.59 
max J 1.07 0.9 5.74 3.13  
Group D5 D6 D7 D8  
J  0.23 0.21 0.56 1.02 
min J 0.17 0.21 0.38 0.63 
max J 0.81 0.21 1.5 1.26  
 

Table 3 Calibration accuracy results, sub-linear 
trend, α=β=0.1 

Group D1 D2 D3 D4  
J  0.74 0.56 4.01 2.31 
min J 0.34 0.39 0.59 0.76 
max J 2.02 0.94 12.8 3.19  
Group D5 D6 D7 D8  
J  0.27 0.25 0.91 1.1 
min J 0.2 0.25 0.41 0.64 
max J 0.83 0.25 4.35 1.36  
 

Table 4 Calibration accuracy results, linear trend 
Group D1 D2 D3 D4  
J  0.61 0.53 2.8 2.3 
min J 0.3 0.38 0.42 0.59 
max J 1.07 0.91 5.63 3.17  
Group D5 D6 D7 D8  
J  0.23 0.21 0.56 1.04 
min J 0.18 0.21 0.38 0.64 
max J 0.86 0.21 1.5 1.31  
 

Table 5 Overall calibration accuracy results  
Appr. Sub-linear  Sub-linear Linear 
  trend common par. trend. 
J  0.57 0.72  0.57 
min J 0.17 0.2  0.18 
max J 5.74 12.8  5.63  
 

Furthermore, a reasonable prediction can be achieved 
by a common set of parameters α, β for all time se-
ries. Table 3 depicts the same information as Table 2, 
for this ad-hoc common-parameters approach. The 
calibration results for the linear-trend approach, i.e., 
when (6) is used instead of (7) for future predictions, 
are presented in Table 4. The overall results for each 
approach are presented in Table 5. The main differ-
ence between the linear and sub-linear approaches is 
that the latter provides much smoother (hence better) 
results with regard to the accuracy sensitivity. 
 
 
4.2 Training of the FMNN Predictor 
 
FMNNs are trained by use of known couples (exam-
ples) of inputs and outputs ( tt yx ~,~ ), t=1,…,T. If the 

FMNN is fed with tx~ , it should produce an output 

( )wxfy ;~
tt =  as close as possible to the given output 

ty~ . Thus, FMNN-training corresponds to solving the 
following non-linear optimisation problem  
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subject to the bounds of w, the vector of all free 
weights of the FMNN. In our case, the weights’ 

Table 6 Overall training results for 8 FMNN-based 
predictors (number of free parameters in parenthesis) 
FMNN N.1 (8) N.2 (8) N.3 (16) N.4 (16) 
J  0.175 0.189 0.159 0.171  
FMNN H.1 (10) H.2 (6) H.3 (12) H.4 (5)  
J  0.125 0.185 0.173 0.211 

 

bounds are –5≤ k
ijw ≤5. This optimisation problem is 

solved for each version of FMNN-based predictors 
and for each time-series by use of an efficient nu-
merical optimisation algorithm employing conjugate-
gradient search directions (Johansson et al. 1992). 
 
Thus, optimal weight values are found for each par-
ticular time-series. Table 6 presents the summarized 
training results (i.e. the averages of the achieved 
training criterion (9) for all data groups) for the 8 
FMNN- based predictor versions. Version H.1 with 
10 free parameters delivers the best training results. 
Note that, for versions based on the same input-
output concept and only differing in the number of 
hidden neurons (i.e. versions H.2 and H.3; N.1 and 
N.3; N.2 and N.4), the version with the higher num-
ber of free parameters (weights) has a strictly better 
training accuracy than its counterpart with a lower 
number of free parameters. A good (or better) train-
ing accuracy is no guarantee for a better approach, 
due to a possible over-parametrisation. Thus, the fi-
nal comparison and selection can only be based on 
the generalisation results. The use of optimal weights 
for each individual time-series may have a number of 
disadvantages, the most important being that, for 
newly introduced articles, there are no past sales to 
allow for individual FMNN training. In the case of 
FMNN-based prediction, however, there is hardly 
any possibility to apply ad-hoc values for the 
weights. What can be done is to repeat the training 
procedure imposing common weights for all time-
series (optimal common-parameters approach), in 
which case the forecasts for any newly introduced ar-
ticles can be produced immediately. 
 
The optimal common-parameters approach was pur-
sued separately for the sigikid sales data (groups D1-
D4) and for the DaimlerChrysler data (groups D5-
D8). Only the articles included in the corresponding 
ordinary data groups D1 and D5 were used to specify 
the optimal common parameters for each FMNN-
based predictor version. Table 7 presents the 
achieved training results, i.e. the achieved values of 
(9) for groups D1 and D5 and for each predictor ver-
sion. The training accuracy deterioration due to the 
use of common (rather than individually optimised) 
weights is very small. 
 
 

5. VERIFICATION RESULTS 
 

5.1 Verification Results for the Holt-Winters Method 
 
Verification is based on N values of the time-series 
from 1999 that were not included in the calibration 
exercise. We have N=42 for the time-series of D1-D4 
and N=52 for those of D5-D8. 



 

     

 
Table 7 Training results for the optimal common-

parameters approach 
FMNN N.1  N.2  N.3  N.4  
D1 0.246 0.246 0.240 0.259  
D5 0.051 0.064 0.048 0.059 
FMNN H.1  H.2  H.3  H.4   
D1 0.188 0.245 0.239 0.269 
D5 0.043 0.068 0.063 0.070 
 

Table 8 Verification accuracy results: optimal pa-
rameters. 

Group D1 D2 D3 D4  
J  0.82 1 303.6 1.03 
min J 0.26 0.56 10.64 0.77 
max J 0.99 2.17 1048 1.33 
Group D5 D6 D7 D8  
J  0.23 0.22 2607.4 0.54 
min J 0.18 0.22 3.15 0.43 
max J 0.3 0.22 10552 0.69  

 
 

The verification phase was conducted only for the 
sub-linear trend (7) using two approaches, the optimal 
parameters approach and the ad-hoc common-
parameters approach (α=β=0.1). For both ap-
proaches, the verification accuracy was calculated by 
use of equation (8), but considering only the weeks 
of 1999. More precisely, the verification accuracy is 
obtained by running every approach for 
t=1,…,104+N, but evaluating only the predictions for 
t=105,…,104+N via 
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Table 8 provides the averages of the achieved verifi-
cation accuracy (10) for each data group as well as 
the best and worst J within each group. Based on 
these results we may state the following: 
- The forecasts are very good (comparable or even 
better than in the calibration) for the ordinary time-
series of D1, D2, D5, D6. 
- An explosion of the verification criterion is ob-
served for the time-series with declining sales from 
D3, D7. This is because the corresponding articles 
have very low sales in 1999 (due to their withdrawal 
from production) rendering the denominator of (10) 
very small. The forecasting errors are temporarily 
large (before adapting to the zero sales) thus render-
ing J exorbitantly high in some cases. In conclusion, 
the partly exorbitant values of J observed are fully 
explicable and do not necessarily reflect an irrelevant 
forecasting behaviour. 
- For the newly introduced articles of D4, D8, the 
warm-up period of the forecasting method is com-
pleted in 1999, hence the forecasts are clearly better 
than in the calibration. Table 9 provides the averages 
of the achieved verification accuracy (10) for each 
data group as well as the best and worst J within 
each group, when the common parameters are used. 
These results may be interpreted in the same way as 
for the optimal parameters above. We remark a slight 

Table 9 Verification accuracy results: common pa-
rameters. 

Group D1 D2 D3 D4  
J  0.81 0.97 162.1 0.98 
min J 0.16 0.54 5.59 0.79 
max J 0.99 2.08 983 1.39 
Group D5 D6 D7 D8  
J  0.21 0.19 1392.4 0.52 
min J 0.15 0.19 3.77 0.43 
max J 0.35 0.19 6308.8 0.64  
 

Table 10 Overall verification accuracy results  
Appr. Sub-linear  Sub-linear trend 
  trend common par.  
J  136.35 73.02  
min J 0.18 0.15   
max J 10552 6308.8  
 
amelioration for data groups D1, D2, D4, D5, D6, 
D8, while for D3and D7 the amelioration of J is 
more substantial (although the J-values are still exor-
bitantly high) due to α=0.1 which is in most cases 
higher than the optimal α-values resulting from cali-
bration, thus leading to a quicker adaptation of the 
forecasts to the close-to-zero sales. 
 
 
5.2 Generalization Results for the FMNN Predictors 
 
The generalisation procedure for the various FMNN-
based predictor versions follows the lines of the veri-
fication procedure of the previous subsection, and is 
based on the same 1999 article data and the same cri-
terion (10). Thus the generalisation results are fully 
comparable across predictor versions, across individ-
ual time-series and, of course, comparable with the 
Holt-Winters verification results. Figure 2, depicts a 
representative sales time-series from data group D2 
along with forecasted values for FMNN predictor 
H.4. Table 11 presents the summarized overall gen-
eralisation results for the 8 FMNN-based predictor 
versions. The explosion of the criterion value for the 
time-series with declining sales D3 and D7 is ex-
plained in precisely the same way as in the 
verification results. To circumvent the distortion in 
the average results, a second row has been added in 
Table 9 that does not include D3 and D7 results. The 
versions N.3, N.4, H.1, H.3, with a higher number of 
weights are seen to produce worse generalisation re-
sults than the versions with a lower number of 
parameters and are therefore discarded. Comparing 
the best FMNN-based predictor, H.4, with the com-
mon-parameters modified Holt-Winters predictor, we 
observe virtually equivalent results. The complex 
machinery of FMNN-based prediction and the higher 
number of parameters did not lead to considerably 
better results than the Holt-Winters method. 
 
Table 12 presents the summarized overall generalisa-
tion results for the 8 FMNN-based predictor versions 
run with the common parameters that were calculated 
in the training phase. The versions N.3, N.4, H.1, H.3 
with a higher number of weights are also here 
equivalent or worse than the simpler versions with  
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Fig. 2. Representative sales time-series from data 

group D2 along with forecasted values for 
FMNN predictor H.4. 

 

Table 11 Overall generalisation results for 8 FMNN-
based predictors (number of free parameters in pa-

renthesis) 
FMNN N.1 (8) N.2 (8) N.3 (16) N.4 (16) 
J  59.99 72.46 63.42 79.30  
Without 
D3 & D7 0.50 0.47 0.50 0.51  
FMNN H.1 (10) H.2 (6) H.3 (12) H.4 (5)  
J  549.84 49.77 59.00 99.00 
Without 
D3 & D7 0.54 0.47 0.48 0.46 
 
less parameters. The achieved generalisation results 
with optimal common parameters are seen to be 
slightly better than those achieved with individually 
optimised parameters. This indicates that the neces-
sary number of parameters required to produce 
reliable and robust sales forecasts does not need to be 
high. Compared with the modified Holt-Winters re-
sults obtained for the same time-series only a slight 
amelioration has been achieved. 
 
 

6. CONCLUSIONS 
 
The problem of medium-term sales forecasting has 
been tackled by use of the Holt-Winters method 
which does not require individual analysis of each 
time-series to produce forecasts, and by use of 8 dis-
tinct versions of FMNN. A modification of the Holt-
Winters method (sub-linear extrapolation) reduces 
substantially the sensitivity of the forecasting results 
with respect to the smoothing parameters thus allow-
ing for the calibration phase to be circumvented via 
use of standard (common) parameter values for all 
time-series. This way, reliable forecasts may be pro-
duced immediately even for newly introduced 
articles for which no past sales are available for cali-
bration. The achieved forecasting results are 
excellent for ordinary time-series and quite satisfac-
tory for special types of time-series. FMNN-based 
forecasts were only slightly better than their counter-
parts that were produced with the much simpler 
modified Holt- Winters method. Although the 
slightly increased forecasting accuracy does not ap-
pear to justify the application of complex FMNN- 
based predictors for the investigated data, bigger dif-
ferences might occur with other sales time-series. 

Table 12 Overall generalisation results for 8 FMNN-
based predictors with common parameters (without 

D3 and D7) 
FMNN N.1  N.2 N.3  N.4  
J  0.47 0.48 0.48 0.48 
FMNN H.1  H.2  H.3  H.4   
J  0.56 0.44 0.46 0.45 
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