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Abstract: The paper investigates the response of stable finite dimensional linear
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1. INTRODUCTION
One of the most fundamental problems in con-
trol theory consists in calculating the response of
various types of systems on stationary stochastic
inputs. In particular, the solution of this prob-
lem proves to be actual for FDLCP systems,
which arise in connection with numerous theoret-
ical questions and practical applications (Bittanti
and Colaneri 2001). In analogy to the theory of
continuous-time LTI systems (Kwakernaak and
Sivan 1972, Green and Limebeer 1995), presently
two basic approaches exist for the solution of the
statistical analysis problem for FDLCP systems:

(1) Time-domain methods, based on the solution
of the periodic Lyapunov differential equa-
tion (Bittanti 1986, Bolzern and Colaneri
1988, Colaneri 2000).

(2) Frequency-domain methods, using the Laplace
transformation and the transfer function con-
cept.

The practical realization of the methods described
in (Araki et al. 1996, Wereley and Hall 1990,
Zhang and Zhang 1997, Zhou et al. 2001, Zhou
et al. 2003, Cantoni and Glover 2000, Möllerstedt
and Bernhardsson 2000) leads to operations with
infinite-dimensional matrices and determinants,
what results in substantial difficulties. The ap-
proach presented in (Rosenwasser 1977, Lampe
and Rosenwasser 2001, Lampe and Rosenwasser

2003) describes FDLCP systems in state space,
and it allows to overcome this difficulty, only op-
erations with finite-dimensional matrices are used
there.

In (Lampe and Rosenwasser 2004) the authors
generalized this approach to FDLCP systems,
which are described by differential equations of
higher order, among them are systems with dif-
ferentiated input. Hereby, the general formulae in
(Lampe and Rosenwasser 2004) are applicable to
the wide class of e-dichotomic systems, which do
not possess multipliers on the periphery of the
unit circle. Thus unstable systems are included.

In practical applications the FDLCP system often
has to be stable. In this important special case
the general relations of the paper (Lampe and
Rosenwasser 2004) might be substantially simpli-
fied, what leads to essentially simpler computing
procedures and new propositions. The usage of the
method is illustrated by an example.

2. QUASI-STATIONARY MOTION

1. The paper considers FDLCP systems described
by a matrix differential equation of the form

d`y

dt`
− a1(t)

d`−1y

dt`−1
− . . .− a`(t)y

(1)

= b1(t)
d`−1u

dt`−1
+ . . . + b`(t)u



where ` > 1, y(t), u(t) are matrices of dimensions
p × n and m × n, respectively. The coefficients
ai(t) = ai(t + T ), bi(t) = bi(t + T ) are periodic
matrices of appropriate dimensions. Suppose all
ai(t) to be continuous, and every matrix bi(t)
should have bounded derivatives up to the order
`− i+1. For n = 1 equation (1) is called vectorial.

2. Consider the homogeneous matrix equation

d`y

dt`
− a1(t)

d`−1y

dt`−1
− . . .− a`(t)y = Opp . (2)

In (2) and furthermore, Oik means the i× k zero
matrix. In what follows, we propose that equation
(2) is asymptotically stable, that means all its
solutions tend to zero for t → ∞. Let the p × p
matrix h(t, τ) be the solution of (2) satisfying the
initial conditions

h(t, τ)|t=τ =
∂h(t, τ)

∂t

∣∣∣
t=τ

= . . .

=
∂`−2h(t, τ)

∂t`−2

∣∣∣
t=τ

= Opp

(3)
∂`−1h(t, τ)

∂t`−1

∣∣∣
t=τ

= Ip

where Ip stands for the p × p unit matrix. Then,
the p×m matrix

r(t, τ) =
∑̀
η=1

(−1)`−η ∂`−η

∂τ `−η
[h(t, τ)bη(τ)] (4)

is called the weighting matrix of equation (1).

3. Consider the integral expression

y∞(t) =
∫ t

−∞
r(t, τ)u(τ) dτ (5)

where u(t) is a m× 1 vector. It is directly verified
that in the case where the integral in (5) converges
and allows a satisfying number of differentiations
with respect to t, then it defines a solution of the
vector differential equation (1), which is called
quasi-stationary. On the set of inputs u(t) for
which quasi-stationary solutions exist, the expres-
sion (5) defines a linear periodic integral operator

y∞(t) = L[u(t)] (6)

which is regular in the sense of (Rosenwasser and
Lampe 2000). Thus, for Reλ > −γ, where γ is
a certain positive number, there exists the para-
metric transfer matrix (PTM) of the operator (5)
W (λ, t), which is given by the formulae

W (s, t) = L[est] e−st =
∫ t

−∞
r(t, τ) e−s(t−τ) dτ

(7)
W (s, t + T ) = W (s, t) .

4. Assume u(t) in (5) to be a centralized white
noise with the spectral density Φ(s) = Im. Then,
as follows from (Lampe and Rosenwasser 2001),
(Lampe and Rosenwasser 2003), the covariance
matrix of the output of the regular operator (5) is
determined by the formula

Ky(t1, t2) =
(8)

1
2πj

∫ j∞

−j∞
W (−s, t1)W ′(s, t2) es(t2−t1) ds

where the prime is written for transposition, and
j =

√−1. Under the taken assumptions both sides
of relation (8) are continuous in both variables
t1, t2. Therefore, in (8) we can assume t1 = t2 = t.
Thus with the notation

K(t) = Ky(t1, t2)|t1=t2=t (9)

we obtain

K(t) =
1

2πj

∫ j∞

−j∞
W (−s, t)W ′(s, t) ds

(10)
= K(t + T ) .

In what follows, the matrix K(t) is called variance
matrix of the quasi-stationary output, or shortly,
variance matrix. The scalar function

dy(s) = trace K(t) = dy(t + T ) (11)

is named the variance of the quasi-stationary
output, and the positive number

d̄y =
1
T

∫ T

0

dy(t) dt (12)

its mean variance. The quantity

||L||2 = +
√

d̄y (13)

is calledH2-norm of the operator (6) (of the equa-
tion (1)). The goal of the present paper consists in
constructing closed formulae for determining the
matrix variance K(t) and the statistical charac-
teristics (11)-(13).

3. PRELIMINARIES

1. The p`× p` matrix

Ac(t) = (14)


Opp Ip Opp . . . Opp Opp

Opp Opp Ip . . . Opp Opp

. . . . . . . . . . . . . . . . . .
Opp Opp Opp . . . Opp Ip

a`(t) a`−1(t) a`−2(t) . . . a2(t) a1(t)




is called the accompanying matrix for equation
(1), and the p`× p` matrix H(t) defined by

dH(t)
dt

= Ac(t)H(t), H(0) = Ip` (15)

is named transition matrix. We assume that H(t)
is known on the interval 0 ≤ t ≤ T , what might
be achieved by numerical integration.

2. The matrix

M = H(T ) (16)

is called the monodromy matrix. The eigenvalues
of the monodromy matrix, that are the roots of
the equation



det(sIp` −M) = 0 (17)

are referred to as the multipliers of equation
(1). Let µ1, . . . , µλ, (λ ≤ p`) be the different
multipliers of equation (1), and ν1, . . . , νλ their
corresponding multiplicities such that ν1 + . . . +
νλ = p`. Then, equation (2) turns out to be stable
if and only if

|µi| < 1, (i = 1, . . . , λ) (18)
is true.

3. Consider the matrix

GT (s, t, τ) =
(19)




H(t)
(
Ip` − e−sT M

)−1
H−1(τ)

0 ≤ τ < t ≤ T

H(t)
(
Ip` − e−sT M

)−1 e−sT MH−1(τ)
0 ≤ t < τ ≤ T.

By construction for t 6= τ the relations

∂GT (s, t, τ)
∂t

= Ac(t)GT (s, t, τ) (20)

∂GT (s, t, τ)
∂τ

=−GT (s, t, τ)Ac(τ) (21)

hold. Moreover for t = τ we obtain

GT (s, t + 0, t)−GT (s, t− 0, t) = Ip` . (22)

4. Using the identity
(
Ip` − e−sT M

)−1

(23)
= Ip` +

(
Ip` − e−sT M

)−1 e−sT M

the matrix (19) might be represented in the form

GT (s, t, τ) = G̃T (s, t, τ) + G(t, τ) (24)

where for 0 ≤ t, τ ≤ T

G̃(s, t, τ) =
(25)

H(t)
(
Ip` − e−sT M

)−1 e−sT MH−1(τ)

with
G(t, τ) =

{
H(t)H−1(τ), t > τ

Op`,p` , t < τ .
(26)

5. Furthermore, we use the block representation

GT (s, t, τ) =
[
gT,ik(s, t, τ)

]

G̃(s, t, τ) =
[
g̃T,ik(s,t,τ)

]
(27)

G(t, τ) =
[
gik(t, τ)

]

where i, k = 1, . . . , `, and gT,ik(s, t, τ), g̃T,ik(s, t, τ),
gik(t, τ) are p × p matrices. Moreover, introduce
the matrix

B(s) =
(
Ip` − e−sT M

)−1 e−sT M (28)

and its block form

B(s) =
[
bik(s)

]
, (i, k = 1, . . . , `) (29)

where the bik(s) are p× p matrices. Thus we find

G̃T (s, t, τ) = H(t)B(s)H−1(τ),
(30)

0 ≤ t, τ ≤ T .

From (23)-(30) the existence of a representation
in the shape

gT,ik(s, t, τ) = g̃T,ik(s, t, τ) + gik(t, τ) (31)

emerge, where

g̃T,ik(s, t, τ) =
∑̀
µ=1

∑̀
ν=1

αik
µν(t)bµν(s)βik

µν(τ) (32)

is valid with known matrices αik
µν(t), βik

µν(τ).
Hereby, the matrices αik

µν(t) are uniquely deter-
mined by the matrix H(t), and the matrices
βik

µν(τ) are uniquely determined by the matrix
H−1(τ). Moreover, if the block representation

H(t) =
[
hik(t)

]
, H−1(τ) =

[
dik(τ)

]
(33)

i, k = 1, . . . , `

with p× p matrices hik(t), dik(τ) is used, then we
obtain

gik(t, τ) =





∑̀

j=1

hij(t)djk(τ), t > τ

Opp , t < τ .

(34)

4. CALCULATION OF VARIANCE MATRIX

1. Introduce the notation
gη(s, t, τ) = gT,1`−η+1(s, t, τ) (35)

and consider the matrix

rT (s, t, τ) =
(36)

∑̀
η=1

(−1)`−η ∂`−η

∂τ `−η
[g1(s, t, τ)bη(τ)] .

As was shown in (Lampe and Rosenwasser 2004),
after transforming (10) the variance matrix could
be expressed by

K(t) =
(37)

T

2πj

jω/2∫

−jω/2

T∫

0

rT (−s, t, τ)r′(s, t, τ) dτ ds

where ω = 2π/T .

2. Below we formulate a number of statements
which allow to find the matrix K(t) with the help
of the transition matrix H(t), which is precalcu-
lated on the interval 0 ≤ t ≤ T .

Lemma 1. The presentation

∂ρg1(t, s, τ)
∂τρ

=
ρ+1∑

k=1

gk(s, t, τ)dk(τ)

(38)
ρ = 1, . . . , `− 1

takes place, where dk(τ) are known p×p matrices.



Proof. Relation (38) could be held by equalization
of the elements of the first rows of the left and
right side of matrix equation (21), and substitu-
tion of the undesired variables.

Lemma 2. Matrix (36) allows a representation of
the form

rT (s, t, τ) = r̃T (s, t, τ) + r0(t, τ) (39)

with

r̃T (s, t, τ) =
∑̀

i=1

∑̀

k=1

φik(t)bik(s)ψik(τ) (40)

where φik(t), ψik(τ) are known matrices. More-
over, r0(t, τ) is a known matrix, such that

r0(t, τ) = Opm , t < τ (41)
is true.

Proof. Relations (39)-(41) could be derived by
inserting (38) into (36), and regarding formulae
(31)-(34).

3. It follows the main result of the paper.

Theorem 1. Construct the representation (39)-
(40). Denote

γikηρ =
∫ T

0

ψik(τ)ψ′ηρ(τ) dτ (42)

δikηρ =
T

2πj

jω/2∫

−jω/2

bik(−s)γikηρb
′
ηρ(s) ds . (43)

Then, the variance matrix K(t) for 0 ≤ t ≤ T
might be written in the form

K(t) =
∑̀

i=1

∑̀

k=1

∑̀
η=1

∑̀
ρ=1

φik(t)δikηρφ
′
ηρ(t)

(44)

+
∫ t

0

r0(t, τ)r′0(t, τ) dτ .

Proof. From (40) follows
rT (−s, t, τ) =

(45)
∑̀
η=1

∑̀
ρ=1

φηρ(t)bηρ(−s)ψηρ(τ) + r0(t, τ) .

Inserting (40) and (45) into (37) yields

K(t) = K1(t) + K2(t) + K3(t) + K4(t) (46)

with

K1(t) =
T

2πj

jω/2∫

−jω/2

T∫

0

r̃T (−s, t, τ)r̃′T (s, t, τ) dτ ds

K2(t) =
T

2πj

jω/2∫

−jω/2

T∫

0

r̃T (−s, t, τ)r′0(t, τ) dτ ds

(47)

K3(t) =
T

2πj

jω/2∫

−jω/2

T∫

0

r0(t, τ)r̃′T (s, t, τ) dτ ds

K4(t) =
∫ t

0

r0(t, τ)r′0(t, τ) dτ .

We will show that K2(t) = Opp. For that reason
we present the second relation in (47) as

K2(t) =
∑̀

i=1

∑̀

k=1

T∫

0

r0(t, τ)φik(t) ·
(48)

·


 T

2πj

jω/2∫

−jω/2

bik(−s) ds


 ψik(τ) dτ .

Owing to the residue theorem according to (18)
we obtain

T

2πj

jω/2∫

−jω/2

(
esT Ip` −M

)−1
ds = Op`,p` . (49)

Hence, for all i, k = 1, . . . , `

T

2πj

jω/2∫

−jω/2

bik(−s) ds = Opp (50)

is valid, and from (48) follows K2(t) = Opp.
Analogously, K3 = Opp could be demonstrated.
As a result from (46) with the help of (47) and
(40) we arrive at formula (44).

4. The next statement yields a constructive pro-
cedure for computing the constant matrix (43).

Theorem 2. Denote
Cik(z) = bik(s)|esT =z

(51)
C̃ik(z) = z−1bik(−s)|esT =z .

The matrices (51) are rational. Besides, the poles
of the matrices Cik(z) are contained in the set of
multipliers µ1, . . . , µλ of equation (1), and hence
are located inside the unit circle. The poles of
the matrix C̃ik(z) are contained in the set of
numbers µ−1

1 , . . . , µ−1
λ , and thus are located all

outside the unit circle. Therefore, matrix (43) can
be computed by the formula

δikηρ =
λ∑

j=1

Res
z=µj

[
C̃ik(z)γikηρC

′
ηρ(z)

]
. (52)

In particular, when all multipliers µ1, . . . , µp` are
simple, so formula (52) takes the form

δikηρ =
p∑̀

j=1

C̃ik(µj)γikηρ Res
z=µj

[
C ′ηρ(z)

]
. (53)

Proof. From (28) we obtain for esT = z

C(z) = B(s)|esT =z = (zIp` −M)−1
M (54)

the poles of which are contained in the set of
multipliers of equation (1). The same is also true
for the elements Cik(z) of the block matrix (54).
Analogously, the properties of the matrices C̃ik(z)



emerge. Furthermore, applying in (43) esT = z, so
we obtain owing to (51)

δikηρ =
1

2πj

∮
C̃ik(z)γikηρC

′
ηρ(z) dz (55)

where the contour integral has to be taken over the
unit circle in positive direction (anti-clockwise).
Calculating the integral (55) by applying the
residue theorem yields (52). If in addition all mul-
tipliers are simple, we obtain

Res
z=µj

[
C̃ik(z)γikηρC

′
ηρ(z)

]

(56)
= C̃ik(µj)γikηρ Res

z=µρ

C ′ηρ(z)

what together with (52) leads to formula (53).

5. NUMERICAL EXAMPLE

1. Consider the equation 1

d2y

dt2
+ (3− cos t)

dy

dt
+ (2− cos t)y

(57)
=

du

dt
+ u

such that ` = 2, T = 2π, ω = 1. The accompany-
ing matrix (14) takes the form

Ac(t) =
[

0 1
cos t− 2 cos t− 3

]
. (58)

2. The transition matrix H(t) might be written in
the form

H(t) =
[

h1(t) h2(t)
h3(t) h4(t)

]
= (59)

[
e−t +f(t) f(t)

− e−t−f(t) + e−2t esin t −f(t) + e−2t esin t

]

with

f(t) = e−t

∫ t

0

e−ν esin ν dν . (60)

3. We write the matrix H−1(τ) in the form

H−1(τ) =
[

d1(τ) d2(τ)
d3(τ) d4(τ)

]
(61)

=

[
− e3τ e− sin τ f(τ) + eτ

e2τ e− sin τ + e3τ e− sin t f(τ)− eτ

− e3τ e− sin τ f(τ)

e2τ e− sin τ +e3τ e− sin τ f(τ)

]
.

4. The monodromy matrix (16) then emerge as

M =

[
e−2π +V V

− e−2π + e−4π −V e−4π −V

]
(62)

with

1 The example was calculated by dr. V. Rybinskii, to
whom the authors gratefully acknowledge.

V = e−2π

∫ 2π

0

e−ν esin ν dν . (63)

5. In the given case, using (62) we obtain

det(zI2 −M) =
(
z − e−2π

) (
z − e−4π

)
(64)

such that equation (57) has the two simple multi-
pliers µ1 = e−2π and µ2 = e−4π, and turns out to
be asymptotically stable.

6. Using the above results, the matrix B(s) (28)
might be represented in the form

B(s) =
[

b1(s) b2(s)
b3(s) b4(s)

]
. (65)

In (65) we have

bi(s) =
bi1

esT −µ1
+

bi2

esT −µ2 (66)
i = 1, 2, 3, 4

with
b11 = µ1(1 + α), b12 = −µ2α

b21 = µ1α, b22 = −µ2α

b31 = −µ1(1 + α), b32 = µ2(1 + α)
b41 = −µ1α, b42 = µ2(1 + α)

(67)

where α is the constant

α =
V

µ1 − µ2
. (68)

7. Now let us construct for the given example the
function rT (s, t, τ). Assume

GT (s, T, τ) =
[

g2(s, t, τ) g1(s, t, τ)
. . . . . .

]
. (69)

The dots in (69) are written for functions having
no influence on the calculations. From (36) and
(57) we obtain

rT (s, t, τ) = g1(s, t, τ)− ∂g1(s, t, τ)
∂τ

. (70)

Furthermore, (21) and (58) lead to

∂g1(s, t, τ)
∂τ

=−g2(s, t, τ)
(71)

− g1(s, t, τ)(cos τ − 3) .

From (70) and (71) follows
rT (s, t, τ) = g2(s, t, τ)

(72)
+ g1(s, t, τ)(cos τ − 2) .

8. Now, let us construct for the function (72) the
representation of the form (39)-(40). Using the
above calculations we obtain

rT (s, t, τ) =
4∑

i=1

ri(t, τ)bi(s) + r0(t, τ) (73)

where

r1(t, τ) = h1(t)f1(τ) r2(t, τ) = h1(t)f2(τ)

r3(t, τ) = h2(t)f1(τ) r4(t, τ) = h2(t)f2(τ)

and, moreover



r0(t, τ) =

{
h1(t)f1(τ) + h2(t)f2(τ) t > τ

0 t < τ

with
f1(τ) = d1(τ) + d2(τ)(cos τ − 2)

f2(τ) = d3(τ) + d4(τ)(cos τ − 2) .

9. With the introduced notation the formula for
the output variance (44) takes the form

dy(t) =
4∑

k=1

4∑

i=1

δik

∫ 2π

0

ri(t, τ)rk(t, τ) dτ

+
∫ t

0

r2
0(t, τ) dτ

with

δik =
T

2πj

∫ jω/2

−jω/2

bi(s)bk(−s) ds . (74)

This result, after inserting (66) into (74) and
evaluating the integral yields

δik =
bi1bk1

1− µ2
1

+
bi1bk2 + bi2bk1

1− µ1µ2
+

bi2bk2

1− µ2
2

i, k = 1, 2, 3, 4 .

10. The computation results for the variance dy(t)
by the above formula are shown in Figure 1.
The numerical value for the mean variance is

0 2 4 6 8 10 12

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t/sec −−>

d y

Figure 1. Output variance dy(t)

d̄y = 0.2943, and theH2-norm (57) takes the value

‖L‖2 =
√

d̄y = 0.5425 .
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