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Abstract: In classical time domain Box-Jenkins identification discrete-time plant and noise
models are estimated using sampled input/output signals. The frequency content of the
input/output samples covers uniformly the whole unit circle in a natural way, even in case
of prefiltering. In Ljung (1999) the time domain Box-Jenkins framework has been
extended to frequency domain data captured in open loop on arbitrary frequency grids. In
this paper we handle the closed loop case. Contrary to the classical time domain case it is
shown that the controller should be either known or estimated. Copyright © 2005 IFAC
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1. INTRODUCTION

Since the frequency content of a sampled signal
covers the whole unit circle, the classical time domain
Box-Jenkins approach (Box and Jenkins, 1970)
identifies the discrete-time plant and noise models
from DC (zero Hz) to Nyquist (half the sampling
frequency). Often one is only interested in the plant
characteristics on a fraction of the unit circle, or one
would like to remove the effect of slow trends and/or
high frequency disturbances. The classical approach
consists in applying a prefilter to the input/output data
(Ljung, 1999). The prefiltering does not affect the
input/output relation, and is equivalent to dividing the
noise model by the prefilter characteristics. However,
to preserve the efficiency (open/closed loop) and the
consistency (closed loop only) of the plant estimates,
the parametric noise model should be flexible enough
to follow the prefiltered error spectrum accurately
(Ljung, 1999). As such, it will try to cancel the effect
of the prefilter. Hence, through the prefilter/noise
model selection a compromise must be made between
the suppression of the undesired frequency band(s)

and the loss in efficiency and/or consistency of the
plant estimates. These conflicting demands can be
avoided by performing the filtering in the frequency
domain: the plant and noise models are identified in
the frequency band(s) of interest only.

In (Ljung, 1999) a frequency domain Box-Jenkins
framework has been developed for data collected in
open loop. The proposed frequency domain
maximum likelihood (ML) solution can handle
arbitrary frequency grids (parts of the unit circle). In
this paper the frequency domain maximum likelihood
solution is extended to the closed loop case. A
surprising result is that the controller should be either
known or estimated. The former has already been
mentioned in McKelvey (2000).

2. LINEAR TIME INVARIANT MODELS

Assuming that the input of the plant  and the
driving white noise source  are piecewise
constant (= zero-order-hold), the output of the plant

 can be written as
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where  is the backward shift operator
( ), and where ,  are
related to the true underlying continuous-time
systems ,  by

(2)

with  the Z-transform and 
(Middleton and Goodwin, 1990). Taking the discrete
Fourier transform (DFT) of the input and output
samples , , , relationship
(1) can be rewritten as

(3)

where  with  the
sampling frequency, and

(4)

the DFT of  with  and 
(Pintelon and Schoukens, 2001). The plant , plant
transient , noise , and noise transient 
transfer functions are rational functions of 

(5)

where , with , ,
, , ,  and , , , , , ,

 and .
The numerator coefficients  and  of  and

 depend on the initial and final conditions of the
experiment and decrease as an  as 
(Pintelon and Schoukens, 2001). Hence, for 
sufficiently large, the transient terms  and  in
(3) can be neglected w.r.t.  and

.

The DFT  of the driving white noise source 
has the following properties. Since  is zero mean
white (uncorrelated over ) noise, it follows that 
(4) is zero mean white (uncorrelated over ) noise
with  and

 (= circular complex distributed)
(Pintelon and Schoukens, 2001). If  is normally
distributed, then  is circular complex normally
distributed. If  is independent and identically
distributed with existing moments of any order, then

 is asymptotically ( ) independent,
circular complex normally distributed (see Pintelon
and Schoukens, 2001, Lemma 14.24). All these

properties motivate the following assumption in the
frequency domain.

Assumption 1 (Plant/noise model)
The observed plant input  and plant output 
frequency domain data are related as

(6)

where  and  are defined in (5).  is
independent (over ), circular complex
( ) normally distributed noise, with
zero mean, and variance . G

3. CLOSED LOOP FRAMEWORK

The closed loop set up of Fig. 1 is defined by the
following assumptions.

Assumption 2 (Closed loop)
The input/output data ,  are related to the
reference signal  and the driving white noise
source  as

(7)

where ,  and  are rational
transfer functions in . G

Assumption 3 (Independence reference signal and
process noise)
The reference signal  is independent of the
process noise . G

It will be shown that the maximum likelihood
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Fig. 1. Identification in open loop (solid lines only),
closed loop with known controller (solid and
dashed lines only), and closed loop with
unknown controller (solid, dashed, and dash-dot
lines). , , , and  are the plant, the noise,
the controller, and the signal transfer functions.
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estimator needs the controller knowledge if only a
part of the frequency grid is considered (see Sections
4 and 5). If the controller or the reference signal are
known, then the closed loop problem can be
reformulated to an equivalent open loop problem. (see
Section 4). If the controller and the reference signal
are unknown, then the controller must be estimated
(see Section 5). The reference signal acts as then as a
disturbance for the identification of the controller, and
it should be modelled as filtered white noise (see Fig.
1). Similarly to the process noise and the plant model
(see Section 2) the reference signal  and the
output of the controller  are written as

(8)

where the signal , the signal
transient , the controller

, and the controller
transient  transfer
functions are rational forms in .

4. IDENTIFICATION IN CLOSED LOOP WITH 
KNOWN CONTROLLER

4.1 Maximum likelihood cost function

Consider the parametric models  and
 (5), with 

, …, (9)

and assume that the frequency domain data ,
 is available at frequencies ,

covering a part of the whole frequency range [0, fs/2].
Assume furthermore that the controller is known.

Assumption 4 (Known controller)
The controller transfer function  is known. G

Theorem 1 (Log-likelihood - known controller):
Under Assumptions 1-4 the negative Gaussian log-
likelihood function is, within a constant, given by

(10)

with , and 

(11)

At DC ( ) and Nyquist ( ) the sums
in (10) are multiplied by 1/2.

Proof: see Appendix I. G

Notes: (i) For  (10) reduces to the open loop
result in Ljung (1999) on p. 230. (ii) Eq. (10) is
mentioned in McKelvey (2000). (iii) For frequency
sets covering uniformly the unit circle the first sum in
eq. (10) with  is asymptotically ( ) zero,
and the ML-solution reduces to the classical time-
domain result. However, since the plant and noise
models are identified at a particular frequency band
(part of the whole frequency range [0, fs/2]), the first
sum in (10) is not zero. It explains why the controller
must be known.

4.2 Maximum likelihood estimator

The parametric models  and 
in (6) are overparametrized and, therefore,  should
be constrained. According to the particular model
structure, one (OE), two (ARMA, ARMAX), or three
(BJ) parameter constraints are needed. Since the cost
function (10) contains exactly the same parameter
ambiguities as  and  in (6),
the estimated models  and ,
with ,  the minimizers of (10), are independent of
the particular parameter constraint(s) chosen
(Pintelon and Schoukens, 2001).

Since cost function (10), is a function of ,
no distinction can be made between noise models
which only differ in poles and/or zeros that are
mirrored w.r.t. the unit circle. This global
identifiability problem is avoided by restricting the
allowable poles/zeros positions of the noise model to
the stable region of the -domain.

Assumption 5 (Constraint noise model)
 is a stable transfer function. The poles of

 that are not in common with  are
stable.

Theorem 2 (ML estimator - known controller): Under
Assumptions 1-5 the Gaussian maximum likelihood
(ML) estimator  of the plant and noise model
parameters minimizes

(12)

w.r.t. . ,  are defined in (11).

Proof: Calculating the derivative of (10) w.r.t.  gives
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(13)

Eliminating  in (10) using (13) and taking the
exponential function gives (12) within a -
independent constant. G

As a result the minimizer of (12) can be calculated in
a numerical stable way via the iterative Newton-
Gauss and Levenberg-Marquardt methods. Theorem 2
describes the ML estimator starting from frequency
domain data ,  (Assumptions 1-5)
described by model (6). If the raw data are time
domain signals then (6) is asymptotically (number of
time domain samples ) valid. To improve the
finite sample behaviour of the estimate , model
(6) is replaced by (3). This results in the same cost
function (12) where the prediction error  is
replaced by

(14)

5. IDENTIFICATION IN CLOSED LOOP WITH 
UNKNOWN CONTROLLER

5.1. Maximum likelihood cost function

From Section 4 it follows that if the controller is
unknown, it must be estimated to avoid a bias error in
the plant model. When identifying simultaneously the
plant and the controller,  is a noisy observation
of the true plant output, and  is a noisy
observation of the true controller output. Hence,
similarly to the identification of the plant, the
following assumptions are needed to identify the
controller.

Assumption 6 (Controller/signal model)
The observed controller input  and controller
output  frequency domain data are related as

(15)

where  and  are rational functions in
.  is independent (over ), circular complex

( ) normally distributed noise, with
zero mean, and variance . G

Consider now the parametric transfer function models
, , , and  with

(16)

where  and  are the numerator and

denominator coefficients of  and 
respectively, and assume that the frequency domain
data ,  is available at frequencies

.

Theorem 3 (Log-likelihood - unknown controller):
Under Assumptions 1-3, 6, the negative Gaussian log-
likelihood function is, within a constant, given by

(17)

with , ,

(18)

and where  is defined in (11). At DC
( ) and Nyquist ( ) the sums in (17)
are multiplied by 1/2.

Proof: see Appendix II. G

Notes (i) The identification of the plant/noise models
is coupled with the identification the controller/signal
models through the transfer function  (18).
(ii) For frequency sets covering uniformly the unit
circle the first sum in eq. (17) with  is
asymptotically ( ) zero, and the ML-solution
reduces to the classical joint input-output approach
(Ljung, 1999; Söderström and Stoica, 1989).

5.2. Maximum likelihood estimator

Following exactly the same lines of Section 4.2 we
obtain the following result.

Assumption 7 (Constraint signal model)
The signal model  is a stable and inversely
stable transfer function.

Theorem 4 (ML estimator - unknown controller):
Under Assumptions 1-7 the Gaussian maximum
likelihood (ML) estimator  of the plant, noise,
controller and signal model parameters minimizes

(19)

λ θ( ) F 1– εG zk
1– θ,( ) 2

k 1=
F∑=

λ
θ

U k( ) Y k( )

N ∞→
θ̂ Z( )

εG zk
1– θ,( )

εG zk
1– θ,( ) H 1– zk

1– θ,( ) Y k( ) G zk
1– θ,( )U k( )–[=

T G zk
1– θ,( )– T H zk

1– θ,( )– ]

Y k( )
U k( )

Y k( )
U k( )–

U– k( ) M zk
1–( )Y k( ) L zk

1–( )W k( )–=

M z 1–( ) L z 1–( )
z 1– W k( ) k

W 2 k( )E { } 0=
µ

G z 1– θ,( ) H z 1– θ,( ) L z 1– θ,( ) M z 1– θ,( )

θ aT bT cT dT jT kT pT qT, , , , , , ,[ ]=

j k, p q,

L z 1–( ) M z 1–( )

U k( ) Y k( )
k 1 2 … F, , ,=

λµ T Ωk θ,( ) 2( )log
k 1=
F∑

1
λ
--- εG Ωk θ,( ) 2

k 1=
F∑+

1
µ
--- εM Ωk θ,( ) 2

k 1=
F∑+

λ var E k( )( )= µ var W k( )( )=

T z 1– θ,( ) H z 1– θ,( )L z 1– θ,( )
1 G z 1– θ,( )M z 1– θ,( )+
------------------------------------------------------=

εM zk
1– θ,( ) M zk

1– θ,( )Y k( ) U k( )+( ) L zk
1– θ,( )⁄=

εG zk
1– θ,( )

f k 0= f k f s 2⁄=

T z 1– θ,( )

λµ 1=
F ∞→

L z 1– θ,( )

θ̂ Z( )

V F θ Z,( ) hF θ( ) 2V G θ Z,( )V M θ Z,( )=

V G θ Z,( ) F 1– εG zk
1– θ,( ) 2

k 1=
F∑=

V M θ Z,( ) F 1– εM zk
1– θ,( ) 2

k 1=
F∑=

hF θ( ) exp F 1– T zk
1– θ,( )log

k 1=
F∑( )=



w.r.t. . ,  and  are
defined in (11) and (18). At DC ( ) and
Nyquist ( ) the sums in (19) are multiplied
by 1/2.

Proof: follow exactly the same lines of the proof of
Theorem 2. G

In case of time domain data  and  in (19) are
extended with the plant, noise, controller and signal
transient terms (follow the lines of Section 4.2).

6. SIMULATIONS

The simulation set up consists of a second-order plant
model  ( , ), and a second-
order monic noise model  ( ), in
a unity feedback setting ( ). The reference
signal  and the driving white noise source  are
white Gaussian DT noise processes. The input/output
DFT spectra  and  are calculated from

 time domain samples, and DFT lines
 ( ) are used to

identify the plant and noise model parameters. For
each of the hundred runs of the Monte-Carlo
simulation the three following estimates are
calculated:

1. ML estimate (12) with  (we pretend
that the data was gathered in open loop),

2. ML estimate (12) with  (true controller
model is used),

3. ML estimate (19) (the unknown controller is
identified).

The following model structure is used ,
, , , , ,

, and . From Fig. 2 it can
be seen that the plant and noise model estimates with

 are biased (the difference between the true
model and the mean estimated model is significantly
larger than the 95% uncertainty bound of the mean
estimate), while no bias can be detected in those with
the known  and the estimated controller. The
mean estimated value of the controller transfer
function equals 0.99995 with a standard deviation of

.

7. CONCLUSION

A surprising consequence of Theorem 1 is that the
knowledge of the controller contributes to the
knowledge of the plant and noise models (  in
(12) leads to biased estimates), which is not the case
for the time domain prediction error method (see
Ljung, 1999). The apparent contradiction can be
explained by the fact that cutting out a part of the unit
circle corresponds to non-causal filtering in the time

domain (e.g. convolution with a sinc-function). The
latter invalidates the classical construction of the
likelihood function based on time domain data
captured in feedback (Caines, 1988). Indeed, the
construction of the likelihood function relies on the
basic assumption that the plant input  does not
depend on future samples of the process noise .
This assumption is violated for non-causal processes

.

From Theorem 4 it follows that identifying the plant
characteristics in closed loop without knowledge of
the controller is much more complex than in case the
controller is known. Indeed, four transfer functions
must be estimated when the controller is unknown:
beside the plant and noise characteristics also the
controller and signal transfer functions. Hence, it is
strongly recommended to store also the reference
signal in a feedback experiment.

Replacing everywhere  by  and using
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Fig. 2. Closed loop simulation ( ):
comparison between the true and the mean
estimated models. Left figures: plant models.
Right figures: noise models. Top row: open loop
estimates, (12) with controller transfer function
set to zero. Middle row: closed loop estimates
with known controller, (12) with true controller
transfer function. Bottom row: closed loop
estimates with unknown controller (19). Black
line: true model. Gray line: complex difference
between true and mean estimated model.
Dashed line: 95% confidence bound mean
estimate.
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the concept of band-limited (BL) white continuous-
time noise within a BL-measurement set up (see
Pintelon et al., 2004), all the results of this paper
remain valid for the continuous-time case.

APPENDIX I

Under Assumptions 1-4  (6) is independent (over
), circular complex normally distributed. To

construct the likelihood function (  is known
exactly) it is sufficient to calculate the mean and
variance of  given the model parameters  and
the variance  of the driving white noise source. In
closed loop the process noise  is correlated with
the input of the plant  (Assumption 2), and is
independent of the reference signal 
(Assumption 3). Therefore, the expected values in the
mean and variance calculation of  should be
conditioned on . The latter is known since the
controller  is known (Assumption 4) and since

 and  are known exactly (no measurement
errors). Using (7) we find

(20)

where  is defined in (11). Hence,

(21)

because  is real at DC ( ) and Nyquist
( ) and circular complex elsewhere. Using

(22)

(independence of  over ) with  the
likelihood of the output data , , …, ,
and elaborating the exponent in (21),

(23)

finally proves (10). The factor 1/2 at DC and Nyquist
in the sums of (10) stems from (21).

APPENDIX II

Under Assumptions 1-3, 6 the vector
 is independent (over ),

circular complex normally distributed for any
frequency different of DC ( ) and Nyquist
( ), while it is normally distributed at DC
and Nyquist. Using (7) and (15) we find for any 

(24)

where , , , , and .
After some calculations we get

(25)

where , , and  are
defined in (11) and (18) respectively. The rest of the
proof follows the same lines of Appendix I (use (21)
and (22)).
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