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Abstract: This paper addresses the problem of designing an output error feedback
tracking control for single-input, single-output, minimum phase, observable linear
systems. The reference output signal is assumed to be smooth and periodic with
known period. By developing in Fourier series expansion a suitable periodic input
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if the Fourier series expansion is finite, while arbitrary small tracking errors are
guaranteed otherwise. Copyright c©2005 IFAC
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1. INTRODUCTION

Learning control was conceived in robotics (see
(Arimoto et al., 1984)) to design a control law
such that the output of an uncertain system tracks
a given periodic output reference characterizing
repetitive tasks. The key idea is to use the infor-
mation obtained in the preceding trial to improve
the performance in the current one. Several con-
tributions for state feedback learning control have
been presented in (Jang et al., 1995; Kim and Ha,
2000; Del Vecchio et al., 2003). Output feedback
controllers for linear and nonlinear systems have
been proposed: (Owens and Munde, 2000; French
et al., 1999; Chien and Yao, 2004a; Chien and
Yao, 2004b). In (Owens and Munde, 2000) an
adaptive iterative learning control is proposed for
minimum phase linear systems of relative degree
one and the convergence to zero of the tracking er-
ror in L2(0, T ) is proved, from any initial condition
and for any reference in L2(0, T ). This result was
extended in (French et al., 1999) to linear systems
of any relative degree by resorting to a resetting
procedure. Linear systems of known order n and

known relative degree ρ are also considered in
(Chien and Yao, 2004b), where the output track-
ing error can be made arbitrarily small in L2(0, T )
from any bounded initial resetting error. Iterative
learning schemes do not guarantee so far asymp-
totic output tracking from any initial condition for
linear systems with relative degree greater than
one. In this paper it is considered (as in (Chien
and Yao, 2004b)) the class of minimum phase
linear systems with known relative degree and
high frequency gain sign, for which the problem of
tracking a smooth periodic output reference, with
known period, by adaptive output error feedback
learning control is solved. Exponential tracking
of both the input and the output reference or
arbitrary small input and output tracking error
is achieved under suitable assumptions: this re-
sult is obtained from any initial condition. The
proposed adaptive learning control is not model
based and has a fixed structure which includes
a filter of order ρ − 1 and a dynamic estimator
of order p to estimate p Fourier coefficients: only
constant bounds on the system coefficients are



required. The adaptive learning control proposed
in this paper may be compared with adaptive
controls (see (Marino and Tomei, 1995; Kristic et
al., 1995)) and the robust regulator (Serrani and
Isidori, 2000). The robust regulator in (Serrani
and Isidori, 2000) requires the output reference
signal to be generated by a known linear exosys-
tem and the corresponding input reference signal
to be exactly generated by a known linear finite
dimensional internal model. Adaptive controls can
track arbitrary smooth bounded reference signals
but do not guarantee in general exponential track-
ing.

2. BASIC ASSUMPTIONS AND
PRELIMINARY RESULTS

Consider the following class of linear systems:

ẋ = Acx + bu + hy, x ∈ ℜn

y = Ccx, y ∈ ℜ (1)

where b = [0, · · · , 0, bn−ρ, · · · , b0]
T ∈ ℜn and h =

[h1, · · · , hn]T ∈ ℜn are unknown constant vectors,

Ac =
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
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

0 1 · · · 0
...

...
. . . 0

0 0 · · · 1
0 0 · · · 0











, Cc = [1, 0, · · · , 0] .

The following hypotheses are made:

(A) The vector h belongs to the known compact
set Sh = {h ∈ ℜn : ||h|| ≤ hM}.

(B) The system is of known relative degree ρ,
1 ≤ ρ ≤ n, all the zeros of the poly-
nomial p(s) = bn−ρs

n−ρ + · · · + b1s + b0

have negative real part and the vector b
belongs to the known compact set Sb =
{

[0, · · · , 0, bn−ρ, · · · , b0]
T ∈ ℜn : 0 < bi,m ≤ bi

≤ bi,M , 0 ≤ i ≤ n − ρ}.
(C) The reference output signal yr(t) ∈ CN (with

N > 3ρ+1/2) is periodic with known period
T and is such that |yr(t)| ≤ R1, ∀t ∈ [0, T ].

Moreover |y(1)
r (t)| ≤ R1d with R1d a known

constant.

It follows from assumptions (B) and (C) that
there exist a suitable initial condition xr0 and a
bounded periodic reference input ur(t) of period
T such that

ẋr = Acxr + bur + hyr, xr(0) = xr0, xr ∈ ℜn

yr = Ccxr, yr ∈ ℜ .

Since the vectors h and b are unknown the refer-
ence input is unknown as well. If ρ > 1 define the
periodic reference signal ξr,1(t) generated by the

following stable filter of order ρ − 1 with suitable
initial conditions ξr(0) = [ξr,1(0), · · · , ξr,ρ−1(0)]T

ξ̇r,1 = −λ1ξr,1 + ξr,2

...

ξ̇r,ρ−1 = −λρ−1ξr,ρ−1 + ur

with λi > 0, 1 ≤ i ≤ ρ − 1. Let the generalized
reference input be defined as µr(t) = ur(t) if ρ = 1
and µr(t) = ξr,1(t) if ρ > 1.

In this section the bounds for the reference signal
µr(t) will be computed. Let us transform system
(1) into a relative-degree-one system with respect
to a new input µ. Consider the filter ξ̇ = Λξ + bcu

ξ̇1 =−λ1ξ1 + ξ2

...

ξ̇ρ−1 =−λρ−1ξρ−1 + u (2)

with arbitrary initial conditions ξ(0) = [ξ1(0),
· · · , ξρ−1(0)]T and define d[ρ] = b, d[i] =
[d1[i], · · · , dn[i]]T = [Ac + λiI]d[i + 1] (i = ρ −
1, · · · , 1), γi = di[1]/d1[1] (2 ≤ i ≤ n). The filtered
transformation

[

y
η

]

=











Ωx ρ = 1

Ω

(

x −
ρ−1
∑

i=1

d[i + 1]ξi(t)

)

ρ > 1
(3)

is introduced where

Ω =















1 0 0 · · · 0
−γ2 1 0 · · · 0
−γ3 0 1 · · · 0

...
...

...
. . .

...
−γn 0 0 · · · 1















with supb∈Sb
||Ω|| △

= ΩM . In the new coordinates,
system (1) becomes

ẏ = η1 + γ2y + d1[1]µ + h1y

η̇ = Γη + βy + νy (4)

where µ(t) = u(t) if ρ = 1, µ(t) = ξ1(t) if ρ > 1,
β = [γ3 − γ2

2 , γ4 − γ3γ2, · · · ,−γnγ2]
T , ν = [h2 −

γ2h1, h3 − γ3h1, · · · , hn − γnh1]
T and

Γ =











−γ2 1 · · · 0
...

...
. . .

...
−γn−1 0 · · · 1
−γn 0 · · · 0











.

By virtue of assumption (B), since λi > 0, the
zeros of the polynomial d1[1](sn−1 + γ2s

n−2 +

· · · + γn) = (bn−ρs
n−ρ + · · · + b1s + b0)

∏ρ−1
i=1 (s +



λi) have negative real part. The reference system
associated to system (4) can be written as

ẏr = ηr,1 + γ2yr + d1[1]µr + h1yr

η̇r = Γηr + βyr + νyr (5)

from which it follows that |µr| ≤ (|ẏr| + |ηr,1| +
|γ2||yr|+ |h1||yr|)/|d1[1]|. Then consider the func-
tion Vηr

= ηT
r Pηr, with P the symmetric positive

definite solution of PΓ+ΓT P = −(ρ+3)I, whose
time derivative satisfies the inequality

V̇ηr
≤−(ρ + 3) ‖ηr(t)‖2 + 2 ‖ηr‖PMβM |yr(t)|

+2 ‖ηr‖PMΩMhM |yr(t)| (6)

where PM = supb∈Sb
||P || and βM = supb∈Sb

||β||.
From (6), since the reference signal ηr(t) is peri-
odic, it follows

||ηr(t)|| ≤ ζ|yr(t)| (7)

with ζ = (2PMβM + 2PMΩMhM )/(ρ + 3). By
assumptions (B) and (C) we have that d1[1] ∈
[bn−ρ,m, bn−ρ,M ], γ2 ∈ [γ2,m, γ2,M ] and

|µr(t)| ≤
(ζ + γ2,M + hM )R1 + R1d

bn−ρ,m
. (8)

Let θ = [θ1, θ2, · · · , θp]
T be the vector of the

first p Fourier coefficients of the Fourier series
expansion of the periodic function µr(t) (p is
an odd number). A positive real ǫp exists such
that (see (Körner, 1988)) µr(t) =

∑p
k=1 θkφk(t)+

ǫ(t) = φT (t)θ + ǫ(t) with |ǫ(t)| ≤ ǫp, φ(t) =
[φ1(t), · · · , φp(t)]

T and φ1(t) = 1, φ2i(t) =√
2 sin(2πit/T ), φ2i+1(t) =

√
2 cos(2πit/T ) (i =

1, . . . , (p−1)/2). Since by assumption (C) yr(t) ∈
CN then µr(t) ∈ CN−1 and ǫp is given by
(Körner, 1988)

ǫp =















4

(

T

2π

)N−1
(N − 1)BN−1

N − 2
, p = 1

4

(

T

2π

)N−1
2N−2BN−1

(N − 2)(p − 1)N−2
, p > 1

(9)

where N > 2 and BN−1 = sup0≤t≤T (|µ(N−1)
r (t)|).

The reference signal µr(t) has a known up-
per bound B, defined in (8), so that by virtue
of the Bessel inequality we have

∑p
i=1 θ2

i ≤
(1/T )

∫ T/2

−T/2
µ2

r(τ)dτ and, consequently,

||θ|| ≤ B . (10)

3. CONTROLLER DESIGN

Since the reference signal µr(t) is unknown, the

estimate µ̂r(t) =
∑p

k=1 θ̂k(t)φk(t) = φT (t)θ̂(t) is

introduced with θ̂(t) = [θ̂1(t), · · · , θ̂p(t)]
T . Since,

by (10), θ is bounded by a known bound, the pro-

jection algorithm proj(χ, θ̂) considered in (Pomet

and Praly, 1992) is used so that the estimate θ̂(t) is
constrained to belong to a suitable region. Define
˙̂
θ = c0 proj(χ, θ̂), in which c0 is a positive adap-

tation gain, χ is a suitable function and proj(χ, θ̂)
is given by

proj
(

χ, θ̂
)

=



























χ, if p(θ̂) ≤ 0

χ, if p(θ̂) > 0 and

χT grad(p(θ̂)) ≤ 0

χp, if p(θ̂) > 0 and

χT grad(p(θ̂)) > 0

where p(θ̂) = (||θ̂||2 − r2
θ)/(α2 + 2αrθ), χp =

[I−(p(θ̂)grad(p(θ̂))gradT (p(θ̂)))/||grad(p(θ̂))||2]χ,
α is an arbitrary positive constant and rθ is the
radius of the region Sθ ⊂ ℜp, centred at the origin,
in which θ is assumed to be. According to (8) and

(10), rθ = B in our case. By definition, proj(χ, θ̂)

is Lipschitz continuous and if θ̂(0) ∈ Sθ then the
following properties hold (Pomet and Praly, 1992)
∀t ≥ 0:

∥

∥

∥
θ̂(t)

∥

∥

∥
≤ α + rθ, ∀t ≥ 0 (11)

∥

∥

∥
proj(χ, θ̂)

∥

∥

∥
≤ ‖χ‖ (12)

θ̃T (t)proj(χ, θ̂(t))≥ θ̃T (t)χ (13)

with θ̃ = θ − θ̂.

Subtracting (5) from (4) we obtain the error
system

ė = η̃1 + γ2e + d1[1]µ + d1[1] (−µr) + h1e

˙̃η = Γη̃ + βe + νe (14)

where e = y − yr, η̃ = η − ηr and, by assumption
(A), |h1| ≤ hM and ||ν|| ≤ ΩMhM .

Before enunciating the main theorem the follow-
ing periodic signals are introduced:

ϕ1(t) = φ(t)

ϕj(t) = λj−1ϕj−1(t) + ϕ̇j−1(t) (15)

2 ≤ j ≤ ρ, with φ(t) given in Section 2.

Theorem 1. Consider system (1) satisfying as-
sumptions (A), (B) and a reference output signal
yr(t) satisfying assumption (C). Consider the dy-
namic control algorithm

ξ̇(t) = Λξ(t) + bcξ
∗
ρ(t) ,

ξ∗j (t) = −ϕT
j (t)θ̂(t)

−σjgj,1(c, k) (y(t) − yr(t))



−
j−1
∑

i=1

gj,i+1(c, k) (ξi(t) − ξ∗i (t)) ,

˙̂
θ(t) = c0 proj [ϕ1(t) (y(t) − yr(t))

+2ϕ1(t)
bn−ρ,m

ρ
·

·
ρ−1
∑

i=1

Gi(c, k)

E2
i (c, k)

(ξi(t) − ξ∗i (t))

]

,

u(t) = ξ∗ρ(t) (16)

in which ξ(0) = ξ0, θ̂(0) = θ̂0, 1 ≤ j ≤ ρ, c0 > 0
is the adaptation gain, gj,1(c, k), gj,i+1(c, k), σj ,
Gi(c, k) and Ei(c, k) are suitable control gains,

||θ̂0|| ≤ B and ξ0 ∈ ℜρ−1. If c ≥ c∗ and k > 0 with
c∗ = hM +γ2,M +3/2+P 2

Mβ2
M +P 2

MΩ2
Mh2

M +(ρ−
1)(1 + γ2

2,M + h2
M ) then:

(i) All closed loop signals are bounded and there
exist two class K functions g1(x), g2(x) such

that ∀ t ≥ t0
∫ t

t0
e2(τ)dτ ≤ g1(x(t0)) +

b2
n−ρ,M (τp/k)

∫ t

t0
(ǫ2 (τ) + ||θ − θ̂(τ)||2)dτ

and |e(t)| ≤ (g2(x(t0))· ·e−(t−t0)/(2τp) +

bn−ρ,M (τp/k)1/2(ǫp + supt0≤τ≤t ||θ − θ̂(τ)||)
with τp = max{1/2, PM} and ǫ, ǫp given in
(9).

(ii) lim supt→∞ ||θ − θ̂(τ)|| ≤ rθ̃ with rθ̃ =
O
(

1/pN−3ρ
)

as p → ∞,
lim supt→∞ |µ(t) − µr(t)| ≤ rµ̃ with rµ̃ =
O
(

1/pN−3ρ−1/2
)

as p → ∞,
lim supt→∞ |y(t) − yr(t)| ≤ re with re =
O
(

1/pN−3ρ
)

as p → ∞.
(iii) If ǫ(t) = 0, ∀t ≥ 0, the equilibrium point

(e, η̃, ξ̃1, · · · , ξ̃ρ−1, θ̃) = 0, with ξ̃i = ξi − ξ∗i
(1 ≤ i ≤ ρ−1), of the closed loop system (14),
(16) is globally exponentially stable and x −
xr, ξ−ξ∗, µ−µr, θ−θ̂ converge exponentially
to zero. ⊓⊔

The expressions of the gains gj,1(c, k), gj,i+1(c, k),
σj , Gi(c, k) and Ei(c, k) which appear in (16)
are omitted for short. A block diagram of the
proposed controller, for a linear system with ρ =
3, is shown in Figure 1: the controller is an
output error feedback controller and contains an
estimator which learns a suitable input reference
signal.

Proof. Property (i). Consider the following func-
tion

V (e, η̃) = η̃T P η̃ +
1

2
e2 (17)

and the input control signal u(t) = ξ∗1(t) =

−ϕT
1 (t)θ̂(t) − g1,1e(t)/bn−ρ,m where g1,1(c, k) =

c+ρ k(1+p). Considering that d1[1](−ur−φT θ̂)e−
k(1 + ||φ||2)e2 ≤ b2

n−ρ,M (||θ̃||2 +ǫ2p)/(2k) and

completing the squares, V̇ satisfies the inequality

Fig. 1. Block diagram for the controller when
ρ = 3.

V̇ ≤ −V/τp + b2
n−ρ,M (||θ̃||2 + ǫ2p)/(2k) which

implies property (i) with g1(x(t0)) = 2τpV (t0) and
g2(x(t0)) = (2V (t0))

1/2.
Property (ii). Consider the function

W (e, η̃, θ̃) = V (e, η̃) +
d1[1]

2c0
θ̃T θ̃ : (18)

completing the squares, recalling (13) and consid-
ering that d1[1]ǫe−k(1+||φ||2)e2 ≤ b2

n−ρ,M ǫ2/(4kp)
and c ≥ c∗, its time derivative becomes

Ẇ = −‖η̃‖2 − e2 +
ǫ2

4kp
b2
n−ρ,M . (19)

From (19) and from Lemma 2 (in Appendix), if
p > 1, the inequality

lim sup
t→∞

||[e, η̃T , θ̃]T || ≤ r(p)

△

=
c1

(p − 1)N−2

√

a6M1

a1m1
(20)

is obtained where c1 = 4(T/2π)N−1(2N−2/(N −
2)) sup0≤t≤T (|µ(N−1)

r (t)|) and a6, M1 and m1

are given by Lemma 2. As p tends to ∞, a6 =
O(1/p), a1 = O(1), M1 = O(1) and m1 =
O(1/p3) so that from (20) we obtain that r(p) =
O(p−(N−3)) which implies rθ̃ = O(p−(N−3)) and

re = O(p−(N−3)). Since |ur(t) − ûr(t)| = |φT θ̃ +

ǫ| ≤ ǫp +
√

p ||θ̃|| △

= rµ̃ it follows that rµ̃ =

O(p−(N−7/2)).
Property (iii). The persistency of excitation Lemma
2 implies that if ǫ(t) = 0, the equilibrium point
(e, η̃, θ̃) = 0 of the closed loop system (14), (16)
is globally exponentially stable and x− xr, u(t)−
ur(t), θ − θ̂ converge exponentially to zero.
If ρ > 1, properties (i), (ii) and (iii) can be
proved employing the functions: V = η̃P η̃+e2/2+
∑ρ−1

i=1 δiξ̃i
2
/2, W = V + d1[1]θ̃T θ̃/(2c0) where

δi = 4b2
n−ρ,m/(4 E2

i ) and P is such that PΓ +

ΓT P = −(ρ + 3)I. ⊓⊔
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Fig. 2. proposed control: (a):u(t), (b): e(t).

4. SIMULATIONS

In this section the proposed controller is compared
to the controllers proposed in (Serrani and Isidori,
2000; Marino and Tomei, 1995; Chien and Yao,
2004a): consider the linear system

F (s) =
2s + 1

s3 − s2 + 2s + 1

and the periodic reference signal generated by
the exosystem ẇ1 = w2, ẇ2 = −w1, yr = w2,
w1(0) = 0, w2(0) = 1: the period of the ref-
erence signal is assumed to be known though
in some practical applications this could be a
strong assumption. The proposed controller is
given by: ξ∗1 (t) = −φT (t)θ̂(t) − 5.2e(t), u(t) =

−(3φT (t) + φ̇T (t))θ̂(t) − 15.6e(t) − 26.12(ξ1(t) −
ξ∗1(t)), ξ̇1(t) = −3ξ1(t) − (3φT (t) + φ̇T (t))θ̂(t) −
15.6e(t)−26.12(ξ1(t)−ξ∗1 (t)), ξ1(0) = −5.7972e(0),
˙̂
θ(t) = 5proj(χ, θ̂), χ = φ(t)e(t) + 0.1923φ(t)

(ξ1(t) − ξ∗1(t)), θ̂(0) = 0 where φ(t) is given in
Section 2 and e(t) = y(t) − yr(t). The robust
regulator is given by α1(e) = −5.2e, u(t) =
29.12η1(t)+η2(t)−15.6e(t)−26.12(ξ1(t)−α1(e)),
ξ̇1(t) = −3ξ1(t) + 29.12η1(t) + η2(t) − 15.6e(t) −
26.12(ξ1(t)−α1(e)), ξ1(0) = −5.7972e(0), η̇1(t) =
−η1(t) + η2(t) + ξ1(t), η1(0) = 0, η̇2(t) = η1(t),
η2(0) = 0. Both the robust regulator and the
proposed controller use the same values of the
feedback gains and, from Figures 2 and 3, it can be
seen that they guarantee similiar transient perfor-
mances. Both the controllers guarantee that the
output tracking error converges to zero. Also the
controller proposed in (Chien and Yao, 2004a) can
be used to control the proposed linear system; the
control parameters are τ = 0.01, ζ̄ = 100, ǫ1 = 5,
δ = 0.01, α = 3, γ = 10, λ(s) = s3 +18s2+107s+
210: figure 4 shows that the input signal is not
regular and the tracking error doesn’t converge to
zero. Finally, Figure 5 shows the results obtained
by the adaptive controller proposed in (Marino
and Tomei, 1995) with λc = 2, λo = 5, k1 = 5,
kα1

= 5, η = 5, φ̇1(t) = −φ1(t) + u, µ̇[1](t) =
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Fig. 3. robust regulator: (a):u(t), (b): e(t).
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Fig. 4. ILC control: (a):u(t), (b): e(t).
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Fig. 5. adaptive control: (a):u(t), (b): e(t).

−µ[1](t) + φ1(t), µ̇1[2](t) = −µ1[2](t) + µ2[2],
µ̇1[2](t) = −2µ2[2] + φ1(t) and with adaptation
gains equal to 5. Even though the reference output
is not periodic, adaptive controls guarantees that
the output tracking error converges asymptoti-
cally to zero, but the controller depends on the
order of the system to be controlled and does
not guarantee exponential tracking. On the other
hand the proposed control and the robust regu-
lator depend only on the relative degree and on
the number of frequencies of the input reference.
While the robust regulator can only track refer-



ence signals generated by a known linear exosys-
tem, the proposed controller doesn’t have such a
limitation. Also the ILC approach doesn’t have
such a limitation but it requires the knowledge of
the order of the system to be controlled.

5. CONCLUSIONS

For linear systems (1) the problem of tracking a
smooth periodic output reference with known pe-
riod by feeding back the output tracking error has
been solved. The designed dynamic controller (16)
has order p + ρ− 1 which depends on the relative
degree ρ and on p estimated Fourier coefficients: it
has a fixed structure which is independent on the
system order n. When the reference input has a
finite Fourier series expansion, exponential track-
ing of both the input and the output reference
is achieved, so that the required reference input
is learned. If the reference input Fourier series
expansion is not finite, the tracking errors can be
arbitrarily reduced by increasing the number p of
the estimated Fourier coefficients in the control.
Some simulations have been carried out showing
the performance of the proposed controller and
those of the adaptive control, the robust regulator
and the ILC control.
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APPENDIX

In the following a persistency of excitation result
is recalled.

Lemma 2. Given the nonlinear time varying sys-
tem

ẋ = f(x, t) + ΩT (t)z + C(t)ω(t), x ∈ ℜn

ż = g(x, t), z ∈ ℜp (21)

with bounded input ω ∈ ℜm, assume that all the
solutions (x(t), z(t)) belong to a region S ⊆ ℜn+p

where the following properties hold, ∀t ≥ t0:

(i) f(x, t) and g(x, t) are continuous and uni-
formly bounded in t with ||f(x, t)|| ≤ kf ||x||,
||g(x, t)|| ≤ kg||x||;

(ii) The matrices Ω(t) and C(t) are continuous
and uniformly bounded with ||Ω(t)|| ≤ ΩM ,
||C(t)|| ≤ CM , Ω̇(t) is uniformly bounded
with ||Ω̇(t)|| ≤ Ω̇M ;

(iii) There exists a smooth proper function V (x, z,
t) such that a1(||x||2 + ||z||2) ≤ V (x, z, t) ≤
a2(||x||2 + ||z||2) and V̇ (x, z, t) ≤ −a3||x||2 +
a4||ω||2 for suitable reals ai > 0, 1 ≤ i ≤ 4;

(iv) There exist two positive reals Tp and kp such

that
∫ t+Tp

t Ω(τ)ΩT (τ)dτ ≥ kpI > 0.

Then, lim supt→∞ ||[x(t)T , z(t)T ]T || ≤ ((a6M1)/
(a1m1))

1/2 supτ∈[t0,∞) ||ω(τ)|| with a6 = aΩ2
MC2

M+

a4, M1 = a2 + a max{Ω2
M ,
(

kp + Ω2
M

)2}, m1 =
1
2 min{a3,

1
2akpe

−2Tp}, a = a3/(2(ΩM + Ω̇M +
ΩMkf + (kp + Ω2

M )kg)
2 + Ω2

M ). If ω(t) = 0,
∀t ≥ t0, all the solutions (x(t), z(t)) converge
exponentially to the origin.

The proof follows from a similar result given in
(Del Vecchio et al., 2003) with minor modifica-
tions.


