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Abstract: In this paper, a state observer is proposed for the reconstruction of
the concentration profiles in a simulated moving bed. The approach is based
on a simple Luenberger-like correction term. Validating simulations are proposed
to assess the efficiency of the proposed profile reconstruction and its robustness
against uncertainties on modelling parameters. Comparisons are also done with
open-loop simulation based-observer in order to strengthen the relevance of the
correction term. Copyright c©2005 IFAC
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1. INTRODUCTION

The Simulated-Moving-Bed (SMB) is an efficient
counter-current separation process that is exten-
sively used in the process industry. The SMB has
been studied in the literature concerning different
aspects including design, modelling and simula-
tion (Charton and Nicoud, 1995; Dnnebier and
Klatt, 2000; Ludemann-Hombourger and Nicoud,
n.d.), optimization for selection of optimal operat-
ing conditions and respect of operating constraints
(Mazzotti et al., 1997; Couenne et al., 2002) and
control using multivariable linear constrained con-
trol (Couenne et al., 2002), model-based control
(Natarajan and Lee, 2000; Klatt et al., 2002),
nonlinear geometric control (Kloppenburg and
Gilles, 1999).

Papers concerning the design of observers for the
SMB are less common though it is an important
issue. In, (Mangold et al., 1994) a state observer

is proposed based on the linearized model. In this
approach however, the observer’s gain is com-
puted by heuristic approach based on physical
considerations and simulation studies.

A very different observer is developed by (Kleinert
and Lunze, 2003). Here, only the stationary
regime which results in a periodic behaviour of the
SMB is considered. The model includes convection
and diffusion and the binary system is described
by a linear isotherm. A simple three-dimensional
parameterization of a wave form is proposed and
used to build a corresponding low dimensional
state observer in which the states are the wave
parameters.

In (Alamir and Corriou, 2003), a nonlinear re-
ceding horizon estimation scheme with adjustable
precision is proposed. The scheme approximates
the concentration profiles over a suitable trun-
cated functional basis. The resulting vector of
unknowns is first reduced using available mea-



surements. The remaining part is then computed
by nonlinear optimization. The scheme is concep-
tually very general. However, in order to achieve
high precision estimation, high dimensional opti-
mization problems have to be invoked that may
be difficult to solve in real time.

In this paper, an estimation scheme is proposed
that is dedicated to processes in which the main
phenomena are linear and where nonlinearities are
present but as second order terms (this is typically
the case of many SMB processes with nonlinear
isotherms).

The paper is organized as follows: the estimation
scheme is first presented in section 2 in a general
context. The SMB equations are recalled in sec-
tion 3 and the way they can be put in the general
form of section 2 is detailed. Finally, illustrative
simulation results are proposed in section 4 in or-
der to assess the efficiency of the proposed scheme
in estimating the concentration profiles in the the
columns despite significant errors in the system’s
parameters knowledge.

2. THEORETICAL BACKGROUND

2.1 definition of the class of systems

Consider a nonlinear system given by :

ẋ(t) = A(u(tk−1))x(t) + B(u(tk−1))w(t) +

+φ(x(t), u(tk−1), w(t)) ; t ∈]tk−1, tk] (1)

x(t+k ) = Mx(tk) (2)

y(t) = H(u(tk−1))x(t) (3)

where x ∈ Rn is the state of the system; y is
the measured output; u is a piece-wise constant
control input while w is a measured exogenous
signal. (tk)k≥0 is a strictly increasing sequence
of switching instants w.r.t which the piece-wise
constant control u is defined. x(t+k ) stands for the
state ”just after” instant tk in order for (2) to
define a jump on the state arising at instant tk.
The control input u and the measured exogenous
signal w are assumed to belong to two compact
sets respectively denoted by U and W. Namely :

∀t ∈ R+ ; (u(t), w(t)) ∈ U ×W (4)

furthermore, the following assumptions are needed :

Assumption 1. The nonlinear term in (1) is
globally Lipschitz as a function of x uniformly in u
and w. More precisely, there is a constant Kφ > 0
such that ∀(u,w) ∈ U ×W

‖φ(x1, u, w)− φ(x2, u, w)‖ ≤ Kφ · ‖x1 − x2‖ (5)

Assumption 2. There exists a positive real τmin

such that ∀k, tk+1 − tk ≥ τmin

Assumption 3. For all u ∈ U , the pair (A(u),H(u))
is observable. Moreover, there exists a positive real
µ > 0 such that for all u ∈ U , there exists a
positive definite matrix Q(u) and a matrix gain
L(u) such that the following conditions hold

(1) for all u ∈ U :

−λmin(Q(u)) + 2Kφ‖P (u)‖ ≤ −µ (6)

where P (u) is the solution of the Lyapunov
equation :

[
A(u)− L(u)H(u)

]T

P (u)

+P (u)
[
A(u)− L(u)H(u)

]
= −Q(u) (7)

(2) for all u ∈ U there exists a positive γ > 0
such that :

C(U) · λ2
max(M) · e−µτmin/λmax(P (u)) ≤ γ < 1

(8)

where C(U) is the positive real defined by

C(U) := sup
(u1,u2)∈U×U

[λmax(P (u1))
λmin(P (u2))

]
(9)

(3) There is a positive definite matrix P0 > 0
such that

∀u ∈ U , P (u) ≥ P0 > 0 (10)

2.2 Observer’s definition

In order to estimate the state of the dynamical
system (1)-(3), the following observer is used

˙̂x(t) = A(u(tk−1))x̂(t) + B(u(tk−1))w(t) +

+φ(x̂(t), u(tk−1), w(t)) +

+L(u(tk−1))
[
y(t)−H(u(tk−1))x̂(t)

]
(11)

x̂(t+k ) = Mx̂(tk) (12)

The following proposition can then be proved (see
the appendix) :

Proposition 1. Under assumptions 1-3, the dy-
namic system (11)-(12) is an asymptotic dynamic
observer for the switched nonlinear system (1)-(3).

3. APPLICATION TO THE SMB

3.1 Model

The SMB has been modeled by the following par-
tial differential equations (Dnnebier et al., 1998)



representing respectively the mass balance for
component i and the mass transfer from the liquid
phase to the solid phase

∂ci

∂t
+

1− ε

ε

∂qi

∂t
−Dax

∂2ci

∂x2
+ v

∂ci

∂x
= 0

∂qi

∂t
= keff,i

3
Rp

(c− ceq
i )

(13)

where ci and qi are respectively the concentrations
in the liquid and solid phase, ε is the porosity, Dax

is the apparent dispersion coefficient, v the fluid
velocity in given section, Rp the adsorbent particle
radius, keff,i the mass transfer coefficient, ceq

i the
equilibrium concentration. The binary system is
described by a competitive Langmuir nonlinear
isotherm

qi =
NiKici

1 +
∑nc

j=1 Kjcj
(14)

with Ni the saturation loading capacity of compo-
nent i and Ki the Langmuir equilibrium constant.
The values of the parameters used in the simula-
tion are given in Table 1.

Table 1. Values of the parameters for
SMB simulation.

System parameters

D 5 cm L 50 cm
ε 0.4 Dax 3× 10−2 cm2/s

KA 1500 cm3/g KB 2000 cm3/g
NA 5 NB 5

keff,A 3× 10−4 cm/s keff,A 2.5× 10−4 cm/s

Operating parameters

Feed concentration cf,i 5× 10−4 g/cm3

Feed flow rate Qf 5.62 cm3/s
Desorbent flow rate QD 100.644 cm3/s
Extract flow rate QE 75.14 cm3/s
Recycle flow rate QIV 103.56 cm3/s

Switching period tswitch 30 s

3.2 Obtaining the canonical form (1)-(3)

After noticing that the mass transfer equation
can be neglected with very little error and using
classical finite difference discretization, the system
equations become

E(c)ċ = F (u)c + G(u)cf (15)

where cf is the feed concentration which is a
measured exogenous signal. m being the number
of discretization elements, the chemical system
being binary, the vector c has dimension 2m and is
formed by the successive vectors [cA,i, cB,i] where
i is the index of a spatial element. F (u) and
G(u) depend on the flow rates and thus on the
manipulated inputs u. The matrix E(c) can be
easily inverted resulting in

ċ = E−1(c)F (u)c + E−1(c)G(u)cf (16)

Then, E−1(c) is decomposed into two contribu-
tions, one equal to E−1(c = 0) and denoted by
E−1

0 , the other one depending on c and is equal
to [E−1(c)−E−1(c = 0)] and denoted by E−1

c , so
that the system becomes

ċ = E−1
0 F (u)c + E−1

c F (u)c + E−1(c)G(u)cf(17)

with a linear term, a nonlinear term and one
disturbance terms.

The matrix M representing the shift operation
is easily obtained from the representation of the
vector c just before and after the shift

c+ = Mc− (18)

The measured outputs are the concentrations cA

and cB at the different streams of the SMB, i.e.
the extract, the inlet of section III, the raffinate
and lastly the recycle or outlet of section IV. Fur-
thermore, the measurements are assumed to be
instantaneous. From this definition of the outputs,
the matrix H is deduced.

To summarize, the system can be put in the
general form (1)-(3) with the following definitions
(with x = c and w = cf )

A(u) = E−1
0 F (u) ; φ(x, u) = E−1

c F (u)c

B(u) = E−1
0 G(u) + E−1

c G(u)

3.3 Some implementation issues

The computation of the observer gain L(u) that is
used in the observer equations (11) has been done
using the dual linear quadratic regulator design 1

with some suitably chosen weighting matrices
QReg ∈ R160×160 and R ∈ R8×8

Reg . This enables to
find L(u) such that the Lyapunov equation (7) is
satisfied with Q given by

Q(u) = QReg + L(u)RregL(u)T

This is possible if the pair (A(u),H) is observ-
able which has been tested for some hyper-cube
centered on some nominal value of the flow rates
corresponding to good separation regime.

4. SIMULATION RESULTS

In all simulations, the states of the process are
initially equal to zero. At time zero, the model

1 This has been done using the Matlab’s subroutine LQR
in which the matrices AT (u), HT , QReg and RReg have
been used.



of the process starts but the observer starts only
after three switching periods and starts with non-
zero initial estimated states.

Different scenarii have been successively tested to
check the influence of various model errors and
of measurement noises following the normal law,
as well as the influence of the correction term
in the observer. The chosen times were the end
of the 1st switch corresponding to a time close
to initialization, the end of the 8th switch to an
intermediate time, the end of the 30th switch to
a time when normally the stationary regime is
established.

The spatial profiles of real and estimated com-
ponents show that in absence of of any noise or
modeling errors are shown on figure 1. The model
errors have various influences on the estimated
spatial profile. In Figure 2, it appears that the
errors on the equilibrium coefficients influence the
estimated states more than the errors on the flow
rates or on the feed concentration. However, in
spite of relatively large errors on all these pa-
rameters, the states are correctly estimated. The
influence of the correction term of the observer is
clearly demonstrated in Figure 3. In the absence
of this correction term, after 30 switches, the devi-
ation between the real and the estimated profiles
is considerable and the presence of this correction
term is necessary.

The convergence has been shown for a point of
a wave front located at mid-distance between
two measurements in the third section. In the
absence of model errors, the observer with cor-
rection term converges in approximately three
switching periods towards the real state (Figure
4.(a)) while the free-correction term simulation
based observer converges much more slowly since
about 10 switching periods are necessary for the
estimated profiles to converge to the real ones
(Figure 4.(b)).

Finally figure 5 enables to appreciate the noise
level by showing the behavior of the feed point
measurements and the corresponding estimation
under several modelling errors.

Appendix A. APPENDIX

A.1 Proof of proposition

Using e to denote the estimation error, namely

e(t) = x(t)− x̂(t) (A.1)

direct computation leads to the following error
dynamics

ė(t) =
[
A(u(tk−1))− L(u(tk−1))H(u(tk−1))

]
e(t) +

+φ(x(t), u(tk−1), w(t))− φ(x̂(t), u(tk−1), w(t))(A.2)

e(t+k ) = Me(tk) (A.3)

Using the notation V (e, u) = eT P (u)e, one can
write for all t ∈ [t+k−1, tk[ using (7)

V̇ (e(t), u(tk−1)) ≤
[
−λmin(Q(u(tk−1)))

+2Kφ · ‖P (u(tk−1))‖
]
‖e(t)‖2 (A.4)

hence, by virtue of (6), it comes that for all
t ∈ [t+k−1, tk]

V̇ (e(t), u(tk−1)) ≤ − µ

λmax(P (u(tk−1)))
V (e(t), u(tk−1))

therefore

V (e(tk, u(tk−1))) ≤ e−µτmin/λmax(P (u(tk−1))) ·
·V (e(t+k−1, u(tk−1))) (A.5)

Let us now compute V (e(t+k ), u(tk)) . By defini-
tion, one has

V (e(t+k ), u(tk)) := eT (tk)MT P (u(tk))Me(tk)

≤ λ2
max(M)λmax(P (u(tk)))‖e(tk)‖2

≤ λ2
max(M)λmax(P (u(tk)))

V (e(tk), u(tk−1))
λmin(P (u(tk−1)))

and using (A.5), one obtains

V (e(t+k ), u(tk)) ≤ λ2
max(M)C(U) ·

e−µτmin/λmax(P (u(tk−1))) · V (e(t+k−1, u(tk−1)))

which, by virtue of (8) gives

V (e(t+k ), u(tk)) ≤ γ · V (e(t+k−1, u(tk−1)))

therefore, according to assumption (10)

lim
k→∞

eT (t+k )P0e(t+k ) ≤ lim
k→∞

V (e(t+k ), u(tk)) = 0

and since P0 is positive definite, it comes that

lim
k→∞

e(t+k ) = 0

This together with the consistency if the observer
equation and the continuity of the jump map
clearly prove the result. ♦
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Fig. 1. Spatial profiles of component A (top) and B (bottom) in the SMB at the end of the 1st, 8th and
the 30th switching periods. Continuous line (real states), dashed line (estimated states). (Conditions:
no measurement noise, no model errors, correction term in the observer).
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Fig. 2. Influence of various modelling errors on the spatial profiles of component A (top) and B (bottom) in
the SMB at the end of the 8th switching period. Continuous line (real states), dashed line (estimated
states). In all cases, measurement normal noise (σ = 0.25) and correction term in the observer.
(Left conditions: model errors on the equilibrium constants Ki and Ni (5%), correction term in
the observer). (Middle conditions: model errors on the flow rates (±5%) and the feed concentration
(±5%), correction term in the observer). (Right conditions: model errors on the equilibrium constants
Ki and Ni (5%), the flow rates (±5%) and the feed concentration (±5%)) .
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Fig. 3. Influence of the correction term of the observer on the spatial profiles of component A (top) and B
(bottom) in the SMB at the end of the 30th switching period. Continuous line (real states), dashed
line (estimated states). In both cases, measurement normal noise (σ = 0.25), model errors on the
equilibrium constants Ki and Ni (5%). (Left conditions: no correction term in the observer).
(Right conditions: correction term in the observer).
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(b) without correction term

Fig. 4. Convergence of the observer for a point located at middle of section III of the SMB for components
A (top) and B (bottom). Continuous line (real states), dashed line (estimated states). (Conditions:
no measurement noise, no model errors, (a) correction term included in the observer. (b)
Correction term is not included).
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Fig. 5. Convergence of the observer for the feed point of the SMB for components A (top) and B (bottom).
Continuous line (real states), dashed-point line (estimated states), dashed line (measurements).
(Conditions: measurement normal noise (σ = 0.25), model errors on the equilibrium constants Ki
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