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Abstract: The paper presents the application results concerning the fault detection
of a dynamic process using linear system identification and model–based residual
generation techniques. The first step of the considered approach consists of
identifying different families of linear models for the monitored system in order
to describe the dynamic behaviour of the considered process. The second step of
the scheme requires the design of output estimators (e.g., dynamic observers or
Kalman filters) which are used as residual generators. The proposed fault detection
and system identification schemes have been tested on a chemical process in the
presence of sensor, actuator, component faults and disturbance. The results and
concluding remarks have been finally reported. Copyright c© 2005 IFAC.
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1. INTRODUCTION

Since the early 1970’s, the problem of reliable fault
diagnosis in dynamic processes has received great
attention and a wide variety of robust approaches
has been proposed and developed. Recently, dif-
ferent analytical redundancy–based methods have
been developed to diagnose faults in linear, time-
invariant, dynamic systems and a wide variety
of model–based approaches has been proposed
(Chen and Patton, 1999; Patton et al., 2000).
There are different model–based approaches to
the fault diagnosis problem, namely parameter
identification, parity equations (Gertler, 1998),
methods in frequency or in state–space domain,
such as diagnosis observers (Frank, 1990) and
Kalman filters (Chen and Patton, 1999; Patton
et al., 2000).

Even if analytical redundancy methods have been
recognised as a powerful and effective technique
for detecting faults, the generation of robust resid-
uals is a critical issue because of the presence
of unavoidable modelling uncertainty. The main
problem regarding the reliability of fault diagnosis
schemes consists of the modelling uncertainties
which are due, for example, to process noise,
parameter variations and non–linearities. Model–
based methods use a model of the monitored pro-
cess in order to produce the symptom or residual
generator. If the system is not complex and can be
described accurately by the mathematical model,
fault detection is directly performed by using a
simple geometrical analysis of residuals. In real
industrial systems however, since the modelling
uncertainty is unavoidable, the design of a ro-
bust fault diagnosis scheme should consider the
modelling uncertainty with respect to the sen-



sitivity of the faults. Several papers addressed
this problem. For example, optimal robust parity
relations were proposed in (Gertler, 1998), and the
threshold selector concept was introduced (Chen
and Patton, 1999; Patton et al., 2000). One other
promising approach is the decoupling between
disturbances and residuals achieved by means of
a proper observer scheme and design (Chen and
Patton, 1999; Patton et al., 2000). This approach
requires the knowledge of a model of the pro-
cess under investigation and, in particular, of the
disturbance distribution matrix. Thus, modelling
(Chen and Patton, 1999) or identification (Simani
et al., 2000; Simani et al., 2002) procedures can be
defined to estimate the disturbance distribution
matrix.

This work aims to define a comprehensive method-
ology for the detection of actuator, component
and sensor fault of an industrial process by us-
ing an output estimation approach (Simani et
al., 2000), in conjunction with residual processing
schemes which may include a simple threshold
detection (Chen and Patton, 1999). Two main
aspects of the proposed methodology should be
underlined. A linear dynamic model of the input–
output links is obtained by means of identification
schemes which use Equation Error (EE), Errors–
In–Variables (EIV) and State–Space (SS) models
(Ljung, 1999; Simani et al., 2000; Simani et al.,
2002). In the case of the EIV identification tech-
nique, it is based on the Frisch scheme methodol-
ogy (Frisch, 1934; Simani et al., 2000; Simani et
al., 2002). This approach gives a reliable model of
the plant under investigation, as well as providing
variances of the input–output noises (Beghelli et
al., 1990; Simani et al., 2000). Secondly, this work
exploits linear prototypes for the design of linear
output estimators (Simani et al., 2000). In fact,
as the feature of system supervision is to monitor
the operation and performance of the system with
respect to an expected point of operation, linear
system methods are still very valid.

The paper is organised as follows. In Section 2 the
problem statement is given and described from a
mathematical point of view. The fault diagnosis
scheme is then presented in Section 3. In Section
4, the chemical industrial process used to test
the proposed methodology is presented and the
results concerning the diagnosis of faults are also
reported. Finally, conclusions reported in Section
5 close the paper.

2. MODEL DESCRIPTION

This section recalls the methods for the mathe-
matical modelling of the system under diagnosis
and that are exploited for the problem of model–
based fault diagnosis.

Let us suppose that a number of N samples
can be acquired form the monitored system de-
picted in Figure (1). Such time sequences of data
can represent the input and the output variables
u(t) ∈ �r and y(t) ∈ �m of the process, with t =
1, . . . , N , respectively. In the general framework
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Fig. 1. The monitored system.

of linear systems, in this paper we consider the
description of the plant (1) and its input–output
measurements by means of a discrete–time, time–
invariant, input–output dynamic model with the
following structure:

y(t) = F(z) u(t) + G(z) e(t), t = 1, . . . , N. (1)

The entries of the discrete–time transfer matri-
ces F(z) and G(z) are parametrised as rational
functions of polynomials in the variable z, the
coefficients of which are the model parameters
to be identified (Ljung, 1999). Since the equa-
tion error term e(t) is introduced to describe the
disturbance (un–modelled dynamics) affecting the
model, the system (1) is often called equation
error (EE) model structure. The variable z rep-
resents the forward shift operator, i.e. z y(t) =
y(t +1) and it is consistent with the conventional
definition of the z–transform. Depending on the
structure of the transfer matrices F(z) and G(z),
the family of the EE models can describe the
classes of the so–called ARX (Auto–Regressive
eXogenous), ARMAX (Auto–Regressive Moving
Average eXogenous) and the most general Box–
Jenkins (BJ) structures (Ljung, 1999).

The input–output models represented by the sys-
tem family (1) can be transformed into a state–
space formulation, in which a first–order differ-
ence equation exploits an auxiliary state vector
x(t) ∈ �n (Ljung, 1999). Hence, the following
representation can also be considered:

{
x(t + 1) = A x(t) + B u(t) + H e(t)
y(t) = C x(t) + e(t) , t = 1, . . . , N,

(2)

where A, B, C and H are matrices of appropriate
dimensions that can be obtained by direct identi-
fication procedures, e.g., the subspace approaches
(Ljung, 1997; van Overschee and De Moor, 1999).
Since the vector e(t) appears explicitly as in (1),
the SS representation (2) is known as the innova-
tion form of the state–space description.

Finally, another set of models which can be used
for identification purpose is represented by the



EIV systems. According to this theory, it is as-
sumed that the monitored system can be de-
scribed by a linear, discrete–time, time–invariant,
dynamic model of the type:

y(t) = F(z) u(t), t = 1, . . . , N, (3)

where the transfer matrix F(z) consists of poly-
nomial rational function of z representing the link
between the input and the output measurements.

As depicted in Figure (1), the input and the out-
put variables u∗(t) and y∗(t) are usually measured
through actuator and sensors. Generally, sensor
and actuator measurements are affected by addi-
tive noise, that can be modelled as:{

u(t) = u∗(t) + ũ(t),
y(t) = y∗(t) + ỹ(t). (4)

According to the EIV model theory, the vari-
ables ũ(t) and ỹ(t) are generally described as
white, zero-mean, uncorrelated Gaussian noises
(Frisch, 1934; Beghelli et al., 1990; Simani et
al., 2000). Since the error vector e(t) does not
appear explicitly in the EIV models as in (1),
the uncertainty is represented by the noise terms
ũ(t) and ỹ(t) and their variances, that have to
be identified (Beghelli et al., 1990). Hence, it is
assumed that u(t) and y(t) are the only available
measurements from the real process. These model
sets (1), (2) and (3) belong to the most commonly
used ones in practice and we have therefore reason
to present and use them since both explicit algo-
rithms for parameter identification and analytic
results are available (Ljung, 1997; Ljung, 1999).

The model description in Eqs. (1), (2) and (3)
assumes fault–free system operations and working
conditions. As depicted in Figure (1), additive
fault occurrence can be modelled by means of the
following relations{

u(t) = u∗(t) + fu(t)
y(t) = y∗(t) + fy(t)

(5)

where fu(t) and fy(t) are the actuator and sensor
faults, respectively.

These vectors may be modelled by step and ramp
signals in order to describe the presence of bias
or drift on the measurements (abrupt and slowly
developing faults). Signals u(t) and y(t) represent
the input and output measurements, respectively,
which have been used for the fault detection task.
Therefore, by neglecting actuator and sensor dy-
namics, under fault–free assumptions (1), u(t) =
u∗(t) and y(t) = y∗(t). On the other hand, the
case of component faults fc(t) cannot be described
by Eqs. (5). On the other hand, by assuming
general detectability conditions (Chen and Pat-
ton, 1999), faults affecting output measurements

y(t) can be successfully detected by monitoring
both u(t) and y(t) signals. In particular, in some
cases, the fault fc(t) could be described as:

x(t + 1) = A x(t) + B u(t) + fc(t) (6)

where the fault is represented as the case when
some condition changes in the system rendering
the dynamic relations (2) invalid.

The orders and parameters (structures) of the
EE and SS models (1) and (2) can be estimated
from the measured data u(t) and t(t) by means
of automatic identification procedures available
in the System Identification Toolbox in Matlab
environment (Ljung, 1997; Ljung, 1999). On the
other hand, the estimation of EIV models (3)
was presented in (Beghelli et al., 1990) and was
achieved by a software program implemented in
Matlab environment by the same author (Simani
et al., 2000). Among all the systems presented
above, the aim of the paper consists of selecting
the most accurate identified model which is able
to describe the measured data u(t) and y(t) in
the “best possible” way. Since the essence of an
identified model is its prediction aspect, we can
introduce the following performance index:

J =
m∑

i=1

1
N

N∑
t=1

(
ŷi(t) − yi(t)

)2 (7)

representing the sum of the mean square errors
between the i–th output vector ŷi(t) predicted by
the different MIMO models (1), (2) and (3) and
the corresponding i–th output measurement yi(t).

It is worth noting how another very effective way
of evaluating the adequacy and flexibility of the
identified models consists in their use for per-
forming complete simulations (i.e. using only the
initial samples of the predicted outputs) and in
comparing the obtained predictions with the mea-
sured output samples. This procedure gives the
best results when applied to sequences different
from those used to identify the model. The mean
square prediction error (7) between the measured
outputs and the ones obtained by simulation can
be used to compare the different identified models.

3. RESIDUAL GENERATION

The problem treated in this work regards the
diagnosis of faults on the basis of the knowledge
of the measured sequences u(t) and y(t).

The structure of the fault detection device is
depicted in Figure (2). The symptom or resid-
ual generation r(t) is implemented by means of
dynamic observers or Kalman filters, driven by
u(t) and y(t), in order to produce a set of signals



from which it will be possible to diagnose faults
associated to actuators, components and sensors.
As depicted in Figure (2), the symptom evaluation
refers to a logic device which processes the redun-
dant signals generated by the first block in or-
der to unequivocally detect any fault occurrence.
Fault diagnosis is therefore achieved through the
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Fig. 2. Logic diagram of the residual generator.

processing of the residual signals r(t) = y(t) −
ŷ(t) = y(t) − C x̂(t). They are obtained by
comparing the system measurements with the dy-
namic observer or Kalman filter predictions de-
signed on the basis of the identified model of the
process under diagnosis.

As an example, a dynamic observer for the SS
model has the following structure:

x̂(t + 1) = Ax̂(t) + Bu(t) + K
(
y(t)− C x̂(t)

)
(8)

x̂(t) being the observer state vector. The observer
eigenvalues are often chosen in order to maximise
fault detection promptness and to minimise the
occurrence of false alarms. On the other hand, for

+ -
�

u(t) y(t)
r(t)

Observer

Process

ŷ(t)

Fig. 3. The observer (filter) residual generator
scheme.

the Kalman filter design, the essential difference
regards the choice of the feedback matrix K which
is computed by solving a Riccati equation. The
solution of this equation requires the knowledge
also of the variance matrices of the input and the
output noises, which can be identified by means of
the dynamic Frisch scheme (Frisch, 1934; Beghelli
et al., 1990; Simani et al., 2000). The proposed
fault detection scheme is applied to a Continuous
Stirring Tank Reactor (CSTR) process (Russell
et al., 2000), the dynamic behaviour description
of which has been achieved by using a model
obtained from identification procedures.

4. CHEMICAL PROCESS DESCRIPTION

The aim of the study presented in this paper is to
develop a general procedure for the diagnosis of
faults in a chemical process by means of identified
models of the process under investigation.

In particular, the monitored process is a real Con-
tinuous Stirring Tank Reactor, where the reaction

between reactant and product is exothermic. The
main input variables (r = 3) are: the reactor
jacket inlet temperature Tin(t) [K], the reactor
temperature T (t) [K] and the reactor cooling wa-
ter rate q(t) [ m3

min ]. The main output (m = 4)
measurements are: the reactor jacket outlet tem-
perature Tout(t) [K], the product percentage con-
version C(t) [%], the number average molecular
weight Nm(t) [ g

mol ] and weight average molecular
weight Wm(t) [ g

mol ]. The process objective is to
maintain constant the reactor polymer production
by controlling the main input variables in despite
of the unmeasurable disturbance, i.e., the reactor
impurity concentration and fouling d(t).

The importance of this case study is that there
are many examples of reactors in industry like
polymerisation reactor (Russell et al., 2000). The
CSTR with cooling jacket is shown in Figure
(4). Hence, the process has r = 3 control in-

TT
TT

CW

HW

TC

TC TC

Fig. 4. Schematic of the CSTR process.

puts, u(t) = [Tin(t), T (t), q(t)], while the out-
put measurements (m = 4) are y(t) = [Tout(t),
C(t), Nm(t),Wm(t)]. These actual signals can be
acquired from the real plant depicted in Figure
(4). The disturbance vector d(t) represents re-
actor impurities and fouling. Constant physical
properties and constant boundary pressures of all
input and output streams are assumed.

Both process normal operating time series and
faulty data (with different amount of impurities
and fouling) have been measured from the real
process. A sampling rate of 0.5s. was used to
acquire a number of N = 600 actual data se-
quences. The measurements acquired from the
actual chemical process have been modified for
proprietary reasons.

According to Section (2), several families of multi-
ple input–multiple output (MIMO) models (three
inputs and four outputs) have been identified by
using a batch sequence of normal operating data.
Each MIMO model of type (1), (2) and (3) is
driven by u(t) and provides the prediction of the
output ŷ(t) for t = 1, . . . , N .

Table (1) shows the performances of the different
identified models by reporting the values of the J
index (7) with respect to the identification data.
Each model has been tested also in different op-
erating conditions and the output reconstruction
errors J are compared in Table (1). Several time
series of batch data from by reactor corresponding



to different amounts of reactor impurities and
fouling (validation data) have been also exploited
in order to validate the ARX, ARMAX, BJ, SS
and EIV models.

The dynamic model orders reported in Table (1)
have been chosen on the basis of the trend of J
performance index with respect to n and, in par-
ticular, when an increase of n does not correspond
to a meaningful decrease of J . On the basis of

Table 1. CSTR model performances J
with identification and validation data.

Model Order n J (Ident.) J (Valid.)

ARX (EE) 5 0.1203 0.4631
ARMAX (EE) 3 0.0067 0.0161

BJ (EE) 3 0.0826 0.0996
SS 4 0.0034 0.0081

EIV 5 0.1082 0.3511

the simulation results summarised in Table (1), a
MIMO SS model can be chosen to describe with
the “best accuracy” the monitored process dy-
namics. The CSTR process data contains several
faults. Some of these faults are known (actuator
fu(t) and sensor fy(t)), and other are unknown
(component or system fc(t)). Abrupt fault dy-
namics can be associated with a step change in
process variables. On the other hand, slow devel-
oping faults can be associated with an increase in
the variability of some process variables, e.g., a
slow drift in the reaction kinetics.

In this work different fault cases have been con-
sidered: (a) the reactor jacket inlet temperature
Tin(t) (sudden actuator fault fu(t)), (b) the re-
actor jacket outlet temperature Tout(t) (incipi-
ent sensor fault fy(t)) and (c) the process fc(t)
fault (reactor impurities and fouling) concerning
the product percentage conversion C(t) have been
considered in the following. Therefore, in such
fault scenario, in order to successfully perform the
fault detection task, three process measurements
Tin(t), Tout(t) and C(t) are exploited. The resid-
ual r(t) generation has been performed according
to the fault diagnosis scheme presented in Section
(3).

The dynamic observers for the residual signal r(t)
computation can be designed on the basis of the
most accurate identified SS model of the process
under diagnosis. Residual signals are defined as
r(t) = y(t) − ŷ(t), i.e. by the difference be-
tween the measured y(t) (actual measurements)
and estimated outputs ŷ(t) (provided by output
estimators).

The observer eigenvalues have been selected with
a trial and error procedure in order to max-
imise the fault residual sensitivity and to minimise
the false alarm occurrence (Simani et al., 2000).
On the other hand, the Kalman filters design
requires the identification noise covariance ma-

trices affecting the input–output measurements.
They have been estimated by exploiting the
Frisch scheme identification method (Beghelli et
al., 1990; Simani et al., 2000).

As an example, Figure (5) represents fault–free
and faulty residual r(t) abrupt change for the
case in which the additive actuator fault fu(t)
affects the reactor jacket inlet temperature Tin(t)
commencing at the sample 50 (t = 25s.). On the

Fig. 5. Fault case (a) concerning the reactor jacket
inlet temperature Tin(t).

other hand, Figure (6) represents the healthy and
the faulty residual r(t) slow variation for the case
in which the additive sensor fault fy(t) affects the
reactor jacket outlet temperature Tout(t) starting
at the sample 150 (t = 75s.). Finally, Figure (7)

Fig. 6. Fault case (b) regarding the reactor jacket
outlet temperature Tout(t).

represents the fault–free and the faulty residual
r(t) changes when a reactor system fault fc(t)
affects the product percentage conversion C(t).
Such a process fault fc(t) is due to the forma-
tion of reactor impurities and fouling. It is worth

Fig. 7. Fault case (c) affecting the product per-
centage conversion C(t).



noting that, in general, in order to achieve the
maximal fault detection capability, the measure-
ment corresponding to the most sensitive output
y(t) to a fault signal has to be selected. Moreover,
with reference to this case study, the monitored
signals are enough to accomplish fault isolation,
as well (Simani et al., 2000). Note that after the
identification step, a MIMO SS has been chosen
on the basis of the performance index. In general,
different kind of models have to be used in the pro-
cedure, and they should be considered and tested
for faults diagnosis. Moreover, chemical reactor
identification is performed on data collected dur-
ing normal and perturbed operating conditions to
build models. Once the models have been built,
the proposed methodology can be also able to
predict the onset of faults.

The results obtained by this approach indicated
that the minimal detectable faults on the system
actuator, component and sensor are of interest for
the industrial diagnostic applications. The main
aspect of this work was the use of linear system
identification and modelling methods, although
the system considered was non–linear. This is
considered important to avoid the complexities
that would otherwise be inevitable when non–
linear models are used. On the other hand, when
operating conditions change,at least multiple lin-
ear models should be used. See, e.g. (Patton et
al., 2001; Fantuzzi et al., 2002).

There is certainly an increasing interest in the use
of non–linear methods (non–linear observers, ex-
tended Kalman filters, fuzzy–logic methods, etc).
However, as the feature of system supervision is
to monitor the operation and performance of the
system with respect to an expected point of oper-
ation, linear system methods are still very valid.
Deviations from expected behaviour can be used
to monitor system performance changes as well as
system component malfunctions.

5. CONCLUSION

The complete design procedure for fault detection
of actuators, components and sensors in an indus-
trial process was described in this work. A model
of the process under investigation was obtained
by selecting the most accurate identified linear
model. The fault diagnosis was performed by us-
ing dynamic observers or Kalman filters, designed
on the basis of the linear identified model. Faults
on the component of the system, actuator and
sensors were therefore considered. It is worth ob-
serving how the presented method did not require
the physical knowledge of the process under obser-
vation. Such a procedure was applied to the real
data acquired from an industrial chemical process.
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