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Abstract: Plant complexity inevitably leads to poor models that exhibit a high degree of
parametric or functional uncertainty. The situation becomes even more complex if the
plant to be controlled is characterized by multi-valued function or even if it exhibits
a number of modes of behavior during its operation. Recently, control engineers and
theorist have developed new control techniques under the framework of intelligent control
to enhance the performance of the controller for more complex and uncertain plants.
Basically, those techniques are based on incorporating models uncertainty which are
proven to give more accurate control results under uncertain conditions. In this paper
we survey some approaches that appear to be promising for enhancing the performance
of intelligent control systems in the face of higher level of complexity and uncertainty.
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1. INTRODUCTION

In control engineering the main objective is to en-
sure that a system of interest performs according to
predefined desired specifications, often under condi-
tions of uncertainty. In general, uncertainty in con-
trol problems arises because of insufficient knowledge
about the system itself or the environment in which it
operates. This could be due to: the nondeterministic
relationship between the input and the output variables
of the system, the system itself is too complex to
represent and the unexpected changes in the system
characteristics because of failure or time varying prop-
erties.

A large number of control techniques, including clas-
sical control, optimal control, and robust control have
been developed to achieve the above goal. Unfortu-
nately, most of these developed control system design
methods based on the availability of a mathematical
model, which is generally characterized by paramet-
ric or functional uncertainty. Models uncertainty is

usually inevitable when identifying highly complex
systems. This is not simply because of the uncertainty
arising from the estimated parameters or functions. It
concerns also the structure and the complexity of the
model and the appropriate choice of the cost function
which provides basic ground to optimize model pa-
rameters. For such complex systems, neural networks
have been the key solution for getting more accurate
models and better generalization properties.

Although neural networks have helped estimating
more accurate models, it has been shown that for most
real world control problems with unpredictable distur-
bance and which exhibit a number of distinct modes of
behavior during their operation, the predicted output
of the neural network is inherently uncertain. So how
could we proceed in such situations? The solution
to this problem has been addressed from the point
of view of estimating and incorporating uncertainty.
It has been argued that for such complex systems,
it may be the case that incorporating uncertainty in
control design can help providing better control result.



Recently many publications have considered the use
of knowledge of uncertainty to build a more robust
controller.

Consequently new control algorithms have been de-
veloped for incorporating uncertainty in control de-
sign. The purpose of this paper is to provide an
overview of some of the recently developed control
algorithms that have been reported in the literature
concerning this subject.

2. INTELLIGENT CONTROL SYSTEMS

In neuro-control field a large number of publications
describing the use of neural network models for con-
trol of linear and nonlinear systems have been pub-
lished this decade. As a result a number of design ap-
proaches have been developed in the literature. Almost
all theses approaches assume the availability of an ac-
curate mathematical model. This assumption however,
is not reliable when speaking about complex nonlinear
control problems which are often also exhibit a num-
ber of distinct modes of behavior during their opera-
tion. The purpose of this section is to give an overview
for some of the current available control techniques,
which are derived based on the above assumption.

One of the neural network control schemes that is
based on supervised learning methods and the as-
sumption of an accurate model is the inverse control
methodology (Huntet al., 1992; Albus, 1975). In the
direct inverse control scheme (Psaltiset al., 1988), the
inverse of the plant to be controlled is modeled off-
line. Here the unity operator between the reference in-
put and the output is approximated by connecting the
plant inverse model network in series with the plant
in an open loop configuration. This scheme however,
is not very robust due to the absence of feedback. A
more robust scheme that belongs to the inverse control
methodology, utilizes a second neural network that has
been trained previously to model the dynamics of the
plant (Hunt and Sbarbaro, 1991). It is called internal
model control (IMC).

Adaptive control technique (Narendra and Annaswamy,
1989; Åström and Wittenmark, 1989) has been used
in situations where the plant parameters are uncertain,
because it is able to maintain adequate performance in
the presence of unknown or time varying parameters.
Mainly two methods have been reported in conven-
tional adaptive control for handling adaptation: the di-
rect and indirect methods (Narendra and Annaswamy,
1989;Åström and Wittenmark, 1989). Concepts from
conventional adaptive control theory have been ex-
tended naturally to the neural control case (Narendra
and Parthasarathy, 1990). This is because the neural
network models approximate nonlinear functions by
a parameterized model. The paper by Narendra and
Parthasarathy (Narendra and Parthasarathy, 1990) is
often considered as the pioneering paper in this field. It
concentrated on discrete time systems and introduced

four different classes of models. The paper has dealt
with adaptive control for nonlinear plants. It focused
on indirect adaptive control because of the lack of
methods for directly adjusting the parameters of the
controller using only output error between the plant
and the reference input.

The most complex approach than the previously men-
tioned, but most powerful under uncertain conditions
is the adaptive critic family. This approach approxi-
mates dynamic programming which is one of the op-
timal methods for deriving the optimal control law for
stochastic nonlinear control problems. Its application
to real world nonlinear stochastic systems is proven to
be powerful and computationally feasible.

However, all neural control techniques can hardly
give good control result when the plant is operat-
ing in suddenly-changing environment or when it ex-
hibits different features in different zones of its in-
put. This type of plant complexity is called multi-
modality (Fabri and Kadirkamanathan, 2001) and usu-
ally are not accommodated for in the above men-
tioned neural control techniques. In conventional con-
trol methods, this type of plant complexity has been
handled by the use of multiple models. The multi-
ple model control approach has been developed from
the partitioning theory of adaptive control (Lainiotis,
1976). The successful use of multiple models in real
time applications for control has been widely reported
in the literature (Rauch, 1995; Gustafson and May-
beck, 1994; Maybeck and Stevens, 1991; Narendraet
al., 1995; Narendra and Balakrishnan, 1997; Narendra
and Balakrishnan, 1994; Fabri and Kadirkamanathan,
2001; Jacobs and Nowlan, 1991; Johansen and Foss,
1995). Multiple model control techniques have been
recently applied to the neural network models. Con-
sequently, a number of multiple neural network meth-
ods such as the mixture of expert approach (Jacobs
and Nowlan, 1991; Jordan and Xu, 1993; Jordan and
Jacobs, 1994; Bishop, 1995), multiple paired forward
and inverse models (Wolpert and Kawato, 1998) and
the mixture density network approach (Herzallah and
Lowe, 2004b) have been developed.

3. INCORPORATING UNCERTAINTY

In this section a discussion about how uncertainty
knowledge is incorporated in the three neural control
methods discussed in the previous section is provided.
The next section will survey some of the multiple
models approaches for incorporating uncertainty.

3.1 Direct Inverse Adaptive Control

In the direct inverse adaptive control, the controller is
learning to recreate the input that created the desired
output of the plant (Hunt and Sbarbaro, 1991; Psaltis
et al., 1988; Albus, 1975; Baughman and Liu, 1995).



Here the error for adapting the controller is the com-
mand error. Using the command error for adapting the
controller rather than trajectory error has several draw-
backs (Hunt and Sbarbaro, 1991; Psaltiset al., 1988).
Mainly, the learning procedure is not goal directed,
since in control minimizing the trajectory error (the
difference between the system and the desired outputs)
rather than command error is required. In addition, ob-
taining the inverse of the system may not be possible
in problems where the mapping is not one-to-one.

To overcome these problems researchers considered
the use of model uncertainty (Herzallah and Lowe,
2004b; Herzallah and Lowe, 2004a). In (Herzallah and
Lowe, 2004b) a novel inversion-based neurocontroller
for solving control problems involving uncertain non-
linear systems which could also compensate for multi-
valued system (where the mapping is not one-to-one)
is introduced. The approach is based on modeling the
conditional distributions of both forward and inverse
models.

In their work (Herzallah and Lowe, 2004b) the con-
ditional distributions of the models are assumed to
be Gaussian. The Gaussian assumptions for the for-
ward and inverse models are based on Theorem 4.2.1
in (Gersho and Gray, 1992). The theorem states that
minimum mean squared error (MMSE) estimate of
a random vectory given another random vectorx
is simply the conditional expectation ofy given x,
ŷ = E(y | x). Based on this theorem the variance
for each input patternx is shown to be given by
‖ y − ŷ ‖2 (Herzallah and Lowe, 2004b). Another
neural network which takes this variance as a target
value has been used in (Herzallah and Lowe, 2004b)
to model the conditional expectation of that variance,
σ2(x) = E(‖ y − ŷ ‖2| x).

Rather than taking the conditional expectation from
the inverse controller to represent the control signal to
be forwarded to the plant, they suggested searching for
the optimal control signal by generating samples from
the conditional distribution of the inverse controller.
Based on importance sampling from that distribution,
the optimal control law is taken to be the one that
minimizes the following performance index

J(k) = Min
u∈U

E
v
[(ŷ(k+d)−yref (k+d))2 +σ2

ξ ], (1)

whereU is a vector containing the sampled values
from the control signal distribution,E is the expected
value of the cost function over the random noise
variablev, andσ2

ξ is the variance of the uncertainty
of the forward model.

Generating samples from the conditional distribution
of the inverse controller and then finding the control
signal that minimizes a performance index of the form
given in (1) makes the direct inverse control approach
goal directed in terms of minimizing trajectory er-
ror rather than command error. Moreover, searching
for the control signal that minimizes the performance
index in (1) rather than using gradient information

of (1) guarantees obtaining the absolute minimum of
the performance index rather than a relative mini-
mum (Bellman, 1962). Finally, for systems driven by
a random forcing component the searching method al-
lows approximating the integral of the utility function
over the random variable, which is not easy to be done
analytically, by the finite sum as given in (1).

A Bayesian framework for deriving the conditional
distribution of the inverse controller has been pro-
posed in (Herzallah and Lowe, 2004a). Here, the neg-
ative log posterior with respect to the control signal
is minimized instead of minimizing the mean squared
error function in the conventional direct inverse con-
trol method. The proposed Bayesian scheme was for a
general nonlinear plant having the following form

y(k+d) = f(y(k), . . . , y(k−n), u(k), . . . , u(k−n−1)),
(2)

wherey(k) is the measured plant output vector,u(k)
is the measured plant input vector,n is the plant order,
d is a known plant delay, andf(.) is an unknown
nonlinear function.

Based on Theorem 4.2.1 (Gersho and Gray, 1992) and
the result reported in (Bishop, 1995) , the stochastic
model of the system given in (2) is firstly identified. It
is assumed to be described by a Gaussian probability
density function (pdf) with a global covariance matrix,
R−1.

p(y(k + d) | y(k), u(k)) ∝
exp

(
− 1

2
[y(k + d)− f̄(y(k), u(k))]

R−1[y(k + d)− f̄(y(k), u(k))]
)

, (3)

wherey(k) = [y(k), . . . , y(k−n), u(k−1), . . . , u(k−
n−1)] is the vector of previous outputs and inputs val-
ues and̄f(y(k), u(k)) is the conditional expectation of
the forward model.

Given the conditional distribution of the forward
model (3), and a Gaussian prior distribution of the
control signal denoted byp(u(k) | yd(k + d),y(k)),
where yd(k + d) is the desired system output, the
posterior probability distribution of the control signal,
p(u(k) | y(k + d), yd(k + d),y(k)) is shown, using
Bayes rule, to be given by

p(u(k) | y(k + d), yd(k + d),y(k)) =
p(y(k + d) | u(k),y(k))p(u(k) | yd(k + d),y(k))

p(y(k + d) | y(k))
.

(4)

The optimal control lawuopt(k), is then derived by
minimizing the negative log posterior of (4) with re-
spect tou(k)



− log p(u(k) | y(k + d), yd(k + d),y(k)) ∝
1
2
[y(k+d)−f̄(y(k), u(k))]R−1[y(k+d)−f̄(y(k), u(k))]

+
1
2
[u(k)− û(k)]P̂−1[u(k)− û(k)]

− 1
2
[y(k+d)− ŷ(k+d)]Q−1[y(k+d)− ŷ(k+d)],

(5)

whereP̂−1 is the covariance matrix of the prior distri-
bution of control signals,̂u(k) is the mean of the prior
which is equal to the estimated control signal value,
ŷ(k + d) is the best prediction of the system output
given an estimate of the control signal, andQ−1 is the
covariance matrix of the evidence,p(y(k+d) | y(k)).

For linear systems the update equation for the control
signal,uopt(k), and its variance,P opt, is shown to be
given by (Herzallah and Lowe, 2004a)

uopt(k) = û(k) + Γe(k),

P opt = (I − ΓB̂)P̂ , (6)

whereΓ is known as the Bayesian gain,e(k) is the
error, andB̂ is the derivative of the forward linear
model with respect tou(k)

For nonlinear systems the optimal control law is
shown to be given by deriving equation (5) with
respect tou(k) and setting the derivative equal to
zero (Herzallah and Lowe, 2004a).

[y(k + d)− f̄(y(k), u(k))]
∂f̄(y(k), u(k))

∂u(k)
R−1

= (u(k)− û(k))P̂−1 = 0. (7)

A nonlinear optimization method is then used to cal-
culate the optimal control law. The variance of the
optimal control signal is shown to be given by,

P opt =< (u(k)− uopt(k))2 >, (8)

see (Herzallah and Lowe, 2004a) for more details.

Although the direct inverse control approach does
not require the availability of forward model of the
plant to be controlled, The proposed Bayesian method
in (Herzallah and Lowe, 2004a) does. However, the di-
rect inverse control approach does not consider knowl-
edge of uncertainty in deriving the optimal control
law, while the Bayesian method uses knowledge of un-
certainty from both the forward and the inverse mod-
els of the plant to obtain the optimal estimate of the
control signals. This is an advantage of the Bayesian
method over the direct inverse control method. More-
over, the Bayesian method for deriving the optimal
control law provides a systematic procedure for esti-
mating the conditional distribution of the inverse con-
troller.

3.2 Neural Network Adaptive Control

In neural adaptive control scheme, a combined off-
line followed by on-line adaptation is often adopted
to determine the parameter vector of the controller.
This reduces prior uncertainty of unknown parameters
and assure stability of the overall control system.
Only later on-line control is started using the initial
structures of both identifier and controller that are
already substantially close to the optimal.

In their book (Fabri and Kadirkamanathan, 2001)
Fabri and Kadirkamanathan made the argument that
the above procedure for adaptive control defeats its
main objective because most of the uncertainty ex-
isting prior to application of the control can be re-
duced during the off-line training phase. They pro-
posed dual adaptive control scheme which avoided
the pre-control neural network training phase by tak-
ing into consideration the parameters uncertainty and
its effect on tracking, in the on-line control phase.
Their proposed scheme was for stochastic affine class
of nonlinear discrete time system having the general
form

y(k) = f [x(k−1)]+g[x(k−1)]u(k−1)+e(k), (9)

wherey(k) is the system output, u(k) is the control
signal,x(k − 1) = [y(k − n), . . . , y(k − 1), u(k −
1−p), . . . , u(k−2)]T is the vector of previous output
and input values,f [x(k−1)], g[x(k−1)] are unknown
nonlinear functions of the delay vector ande(k) is
an additive noise signal which is assumed to be in-
dependent and has zero mean Gaussian distribution of
varianceσ2.

Using equation (9) and neural network approximation
models for the nonlinear functions of the delay vector,
the affine nonlinear discrete system given in (9) is
represented in the following state form

w∗(k + 1) = w∗(k)
y(k) = h(w∗(k), x(k − 1), u(k − 1)) + e(k), (10)

where

h(w∗, x(k − 1), u(k − 1)) = f̂ [x(k − 1), ŵf ]
+ ĝ[x(k − 1), ŵg]u(k − 1), (11)

could be a nonlinear or linear function of the unknown
optimal parametersw∗ = [w∗f1

, . . . , w∗fi
, w∗g1

, . . . , w∗gi
]

if a multi layer perceptron or a Gaussian radial basis
function networks are used to approximate the non-
linear functions of delay vector respectively. Since
the parameters appear linearly in the Gaussian radial
basis controller a Kalman filter is used to estimate the
parameters and their uncertainty. The multilayer per-
ceptron controller however, is more complicated since
the unknown parameters do not appear linearly in the
model equations. Consequently, an extended Kalman
filter is used for parameter estimation.

Compared to the conventional neural adaptive control
methods where the difference between the desired



output yd(k), and the system outputy(k), [y(k) −
yd(k)]2 is minimized to derive the optimal control law,
the following form of the performance index has been
suggested for incorporating model uncertainty

J = E{[y(k)−yd(k)]2+qu2(k−1)+re2(k) | Ik−1},
(12)

whereE{. | Ik−1} denotes the mathematical expecta-
tion conditioned on the information stateIk−1 which
consists of all output measurements up to time(k −
1), denoted byY k−1 = {y(i)}k−1

i=0 , and all previous
inputsUk−2. The design parametersr, andq are scalar
weighting factors.

The control law minimizing the above performance
index J subject to the system equation (9), is then
shown to be given by

u∗(k− 1) =
{yd(k)− f̂ [.]}ĝ[.]− (1 + r)µgf

ĝ2[.] + q + (1 + r)µgg
, (13)

where the arguments[.] of f̂ and ĝ are [x(k −
1), ŵf (k)] and[x(k − 1), ŵg(k)] respectively,

µgf = ∇hg
(k)Pgf (k)∇T

hf
(k)

µgg = ∇hg (k)Pgg(k)∇T
hg

(k),

wherePgf , andPgg are the partitioning matrices of
the covariance matrix of the optimal neural network
parametersw∗ and∇hg , ∇hf

denote the gradients of

the two components of the functionh, f̂ and ĝ, with
respect tow∗ evaluated atw∗ = ŵ(k) respectively.

In the above proposed scheme (Fabri and Kadirka-
manathan, 2001) Fabri and Kadirkamanathan avoided
the pre-control neural network phase by taking into
consideration model parameters uncertainty. This is
shown to be more convenient with the features ex-
pected from the adaptive control, and also more effi-
cient and economical since off-line training is usually
time consuming and expensive.

An alternative approach for incorporating uncertainty
in functional adaptive control by neural networks was
proposed in (Herzallah, 2003). The scheme is based
on the idea of modeling and incorporating the uncer-
tainty in the predicted output of the neural network
model. Here the forward model of the plant is firstly
identified using a neural network model. Similar to
the discussion in Section 3.1 and based on theorem
4.2.1 (Gersho and Gray, 1992), the output of the sys-
tem is shown to be given by (Herzallah, 2003)

y(k) = ŷ(k) + e(k), (14)

whereŷ(k) is the conditional expectation of the sys-
tem output modeled using a neural network or any
function approximator, ande(k) is the residual error
of the output which is shown to be a random vari-
able with zero mean Gaussian distribution of variance
equal to the squared difference between the system
output and its estimate,‖ y − ŷ ‖2. This variance is
input dependent as has been discussed in Section 3.1.
The conditional expectation of this variance is mod-
eled using another neural network (Herzallah, 2003).

Since the estimated variance,σ2, around the predicted
output of the system model is input dependent Herzal-
lah (Herzallah, 2003), has shown that the derived con-
trol law from the conventional neural adaptive control
method is not optimal. Instead of minimizing the dif-
ference between the system and the desired outputs,‖
y(k)−yd(k) ‖2 in the conventional adaptive control, it
has been shown (Herzallah, 2003) that a performance
index of the following form should be minimized

J = E{(y(k)− yd(k))2}
= (y(k)− yd(k))2 + σ2. (15)

Hence, dropping off the variance of the system output
which is also input dependent from the performance
index to be minimized in deriving the control law can
in no way give the optimal solution. Consequently the
optimal control law is shown to be given by differenti-
ation of (15) with respect tou(k) and equating to zero.

∂J

∂u(k)
= (y(k)− yd(k))

∂y(k)
∂u(k)

+
∂σ2

∂u(k)
= 0. (16)

Compared to the method proposed by (Fabri and
Kadirkamanathan, 2001) this method can be seen to
be more general for many reasons. Firstly, this method
is shown to be suitable for the four different classes
of models defined by Narendra and Parthasarathy
in (Narendra and Parthasarathy, 1990), as long as the
variance of the forward model could be estimated
as input dependent variance. The method proposed
in (Fabri and Kadirkamanathan, 2001) on the other
hand was for a specific affine class of nonlinear dis-
crete time system. Secondly, the variance of the resid-
ual error in (Herzallah, 2003) is the variance of the
error of the predicted output from the neural network.
This includes all possible sources of variation in the
predicted output, whether it is due to noise affecting
the output, noise affecting the input, or even due to
parameters uncertainty. The variance in (Fabri and
Kadirkamanathan, 2001) however, includes variations
of model parameters only.

3.3 Adaptive Critic Control

This approach can be defined as a set of methods that
approximate dynamic programming. It is based on the
basic concept common to all forms of dynamic pro-
gramming (Howard, 1960). The user needs to supply
a utility functionU and a stochastic model of the plant
to be controlled. Dynamic programming is used to
solve for another function called the cost functionJ ,
which is assumed to be a function of the state variable
at timek of the plant to be controlled,x(k).

Following the concept of dynamic programming,
adaptive critic methods can be defined more precisely
as designs that include two neural networks: the critic
network which tries to approximate the cost function
J or its derivatives, and the action network which



should be adapted so as to maximizeJ in near term
future. The input to both the action and the critic
networks is the state vectorx(k). The cost function to
be minimized is usually taken to be of the following
form

J [x(k)] = U(x(k), u[x(k)])+ < J [x(k + 1)] > .
(17)

Based on the output supposed to be approximated
by the critic network and the method for adapting
the action network, three different critic designs have
been proposed in the literature: (1) Heuristic dynamic
programming(HDP ), which adapts a critic network
whose output is an approximation ofJ(x(k)), (2)
Dual heuristic programming(DHP ), which adapts
a critic network whose outputs represent the deriva-
tive of J(x(k)) (Balakrishnan and Biega, 1996), and
(3) Globalized DHP (GDHP ), which adapts a
critic network whose output is an approximation of
J(x(k)), but adapts it so as to minimise errors in
the implied derivatives ofJ , as well asJ itself. The
reader is referred to (Werbos, 1992; Prokhorov and
Wunsch, 1997) for full discussion about critic designs.

The adaptive critic design methods are capable of de-
riving optimal control law over time in noisy nonlin-
ear environments and under uncertain conditions. This
comes from the fact that the adaptive critic methods
are an approximation for the dynamic programming
which is currently the only mathematical formalism
under which an optimal controller can be designed
under uncertain conditions. The fact that (17) takes
the expected value of the cost function at timek + 1,
< J [x(k + 1)] >, shows that models uncertainty can
be accounted for in deriving the optimal control law,
although non of the new researches considered this.

4. IMPROVING THE PERFORMANCE OF
INTELLIGENT CONTROL USING MULTIPLE
MODELS: DEALING WITH UNCERTAINTY

As discussed in Section 2, multiple model approaches
have been proposed to handel problems with higher
level of uncertainty and complexity, known as multi-
modality.

In the control literature, three types of multi-modality
are considered. The first one is temporal multi-
modality: this situation occurs when the plant operates
in suddenly changing environment or when a fault
condition occurs. The second type of multi-modality
is called spatial multi-modality: it occurs when the
plant is characterized by a highly nonlinear complex
function, which exhibits different characteristics over
different operating zones or operating spaces. The
third type of multi-modality occurs when one tries to
acquire the inverse dynamics of the plant using super-
vised learning. This is an ill posed problem, where
there is a well defined forward solution, but the so-
lutions to the inverse problem are not unique. Most

motor control problems are ill-posed in the sense that
there is a well defined forward solution, but the inverse
solution is not unique.

Although multiple approaches usually model the con-
ditional probability of theith model, the controller
is usually designed by ignoring knowledge of uncer-
tainty. Two different methods have been suggested
for designing the controller. In the first method the
new control signal is taken to be the output of the
controller with the highest conditional probability. In
the second method, the new control signal is taken to
be the probability weighted average of the outputs of
all controllers.

Different methods for incorporating uncertainty knowl-
edge in the multiple model approaches have been re-
cently appeared in control literature. In the following
we discuss briefly two of the approaches.

The first method is a mixture of adaptive control
to handle dynamic uncertainty, and multiple model
techniques to handel the multi-modality. It is known
as multiple model adaptive control scheme (Fabri and
Kadirkamanathan, 2001). It is designed for a class of
affine-nonlinear stochastic plant with temporal multi-
modality of the following form

y(k) = fm(k)[x(k−1)]+gm(k)[x(k−1)]u(k−1)+e(k),
(18)

wherey(k) is the system output,u(k) is the control
signal,x(k−1) = [y(k−n), . . . , y(k−1), u(k−1−
p), . . . , u(k−2)]T is the vector of previous output and
input values, ande(k) is an additive noise signal which
is assumed to be independent and has zero mean Gaus-
sian distribution of varianceσ2. The smooth nonlin-
ear functionsfm(k)[x(k − 1)], gm(k)[x(k − 1)] could
switch form at an arbitrary instant in time taking on
any of the pairs{(f1, g1), (f2, g2), . . . , (fH , gH)} as
indexed bym(k) ∈ {1, . . . ,H}.
A multiple model approach based on Gaussian radial
basis function network is used to identify the nonlinear
modes of the plant.H local neural network models,
one per mode, are then used to identify the plant
and to control it via an indirect adaptive techniques.
Two Gaussian radial basis function networks are used
for each local model to identify the two nonlinear
functions(fi) and(gi) in (18)

f̂i[x, ŵT
fi

] = ŵT
fi

φfi [x]

ĝi[x, ŵT
gi

] = ŵT
gi

φgi [x]. (19)

As can be seen from the above equation, the unknown
variables consist of the optimal output layer param-
eters of the networks in all local models,w∗fi

, w∗gi
;

i = 1, . . . , H.

From (18) and (19), the system dynamics during ac-
tivity of the mode captured by local modeli could be
represented in the following state space form



w∗i (k + 1) =w∗i (k)

y(k) =w∗
T

i (k)φi[x(k − 1)] + e(k), (20)

wherew∗
T

i = [w∗
T

fi
(k), w∗

T

gi
(k)] andφT

i [x(k − 1)] =
[φT

fi
[x(k − 1)]φT

gi
[x(k − 1)]u(k − 1)].

The number of local models to be estimated is de-
termined by the number of plant modes if known
a priori. Otherwise, a self organized scheme which
allows adding new local models is used (Fabri and
Kadirkamanathan, 2001). Since (20) is linear in the
parameters, a Kalman filter is used to generate re-
cursively the conditional minimum mean square pre-
dictive estimateŵi(k + 1) of w∗i and its covariance
matrix Pi(k + 1) whenever the mode corresponding
to local modeli is active as could be detected by
m(k). As the mode indexm(k) is not actually known
a mode estimation method is developed in (Fabri
and Kadirkamanathan, 2001). Interested readers is re-
ferred to (Fabri and Kadirkamanathan, 2001) for the
problem of mode and parameters estimation.

Following the discussion in Section 3.2 a performance
index of the form given in (12) has been suggested
for incorporating models uncertainty in the multiple
model adaptive control scheme (Fabri and Kadirka-
manathan, 2001). The difference here is that a number
of local models are taken to represent the forward
dynamics of the system as can be seen from (18).

Subject to (18) and knowledge of the mode sequence
S(k) = {m(1),m(2), . . . ,m(k)}, the control law
minimizing the performance indexJ stated in (12) is
then shown to be given by

u∗(k−1) =
{yd(k)− f̂m(k)[.]}ĝm(k)[.]− (1 + r)νgfm(k)

ĝ2
m(k)[.] + q + (1 + r)νggm(k)

,

(21)
where

f̂m(k) =ŵT
fm(k)

(k | S(k))φf [x(k)]

ĝm(k) =ŵT
gm(k)

(k | S(k))φg[x(k)]

νgfm(k) =φT
g [x(k)]Pgfm(k)(k | S(k))φf [x(k)]

νggm(k) =φT
g [x(k)]Pggm(k)(k | S(k))φg[x(k)], (22)

and whereŵfm(k)(k | S(k)) andŵgm(k)(k | S(k)) are
sub-vectors of̂wm(k)(k | S(k)). SimilarlyPgfm(k)(k |
S(k)) andPggm(k)(k | S(k)) are sub-matrices of the
covariance matrixPm(k)(k | S(k)).

Compared to the conventional multiple model ap-
proaches, this approach has the advantage of incor-
porating uncertainty of model parameters. Again only
parameters uncertainty is accounted for in this ap-
proach. All other sources of uncertainty have been
ignored.

The second method, uses the mixture density network
approach for representing general probability density
functions of the inverse controllers. This method is
applied to ill-posed control problems in which the so-

lution to the inverse controller is not unique (Herzallah
and Lowe, 2004b).

For multi-valued functions (ill-posed problems), it
has been shown (Bishop, 1995; Herzallah and Lowe,
2004b) that mixture density networks (MDNs) pro-
vide a general framework for modeling the conditional
probability density functions of inverse controllers,
p(u(k) | s(k)). Heres(k) = [yd(k + d), x(k)], where
x(k) = [y(k), . . . , y(k− q + 1), u(k − 1), . . . , u(k −
p + 1)]. The distribution of the control signals,u(k),
is described by a parametric model whose parameters
are determined by the output of a neural network,
which takess(k) as inputs. The general conditional
distribution function is given by

p(u(k) | s(k)) =
M∑

j=1

αj(s(k))φ(u(k) | s(k)) (23)

where αj(s(k)) represents the mixing coefficients,
and can be regarded as prior probabilities (which de-
pend ons(k)), φj(u(k)|s(k)) are the kernel distribu-
tions of the mixture model (whose parameters are also
conditioned ons(k)), andM is the number of kernels
in the mixture model.

Different methods for calculating the output from the
mixture density network has been suggested. For con-
trol applications where unique solutions cannot be
found, and where the distribution of the target data
consists of different numbers of distinct branches, one
specific branch from the estimated conditional density
of the MDN needs to be selected. Two examples of
how to select a specific branch are the most likely, and
the most probable output values. Interested readers are
referred to (Bishop, 1995; Herzallah, 2003) for more
details.

However it has been shown (Herzallah and Lowe,
2004b) that non of the two proposed methods lead
to deriving the optimal control law. The argument
was based on the fact that although mixture density
network models the general distribution of the inverse
controllers, people takes a specific quantity to repre-
sent the output of the mixture density network, either
the most probable or the most likely value, and ignores
all other information about uncertainty.

Consequently Herzallah (Herzallah, 2003) proposed
an inversion based neuro-controller for incorporating
uncertainty in the mixture density network. Similar to
the discussion in Section 3.1 the approach is based on
importance sampling this time from the non-Gaussian
distribution of the inverse controller. the optimal con-
trol signal is searched for by generating samples from
that distribution which are then forwarded to the plant
model. The optimal control signal is then taken to be
the one that minimizes a performance index of the
form given in (1).



5. CONCLUSIONS

This paper has provided a survey of some of the re-
cently developed methods in the neural control field
for incorporating models uncertainty. The basic ideas,
the strength and the weakness of each method, and
relations with conventional methods are also summa-
rized. The methods discussed in the paper are mainly
based on utilizing statistical techniques for modeling
the conditional distributions of the outputs or param-
eters of the neural networks. We explored advantages
and disadvantages of each method and discussed the
links between the different methods in a unified pre-
sentation and identified key areas for future research.

This survey is aimed at researchers currently working
in control field. By putting together some of the publi-
cations related to incorporating uncertainty in control
problems, we hope that interested researchers may
find out about the current status of this field.
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