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Abstract: This paper extends some previous work on state feedback Model Predictive 
Control (MPC) to dynamic output-feedback in MPC methodology. The controller is 
updated at each sampling time by minimizing an upper bound of an infinite horizon 
quadratic cost. The optimization problem and its associated constraints, on input and 
output, are expressed by LMI (Linear Matrix Inequality). Only measurable output and a 
priori fixed range values of the non measurable states, are used to determine the 
controller. Stability of the closed loop system is proven. An extension to the robust case 
is discussed.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

During the past few years, MPC has emerged as one 
of the most popular multivariable control technique 
used in industrial process (Camacho and Bordons, 
1998). MPC has also received in recent years 
considerable interest in the research community and 
consequently, important theoretical developments 
have been derived (Mayne, et al., 2000; Bemporad, 
et al., 2002). Among the reasons for the popularity, it 
can be argued the fact that it enables to directly deal 
with inputs, states and outputs constraints, which can 
be explicitly taken into account in the optimization. 
MPC technology can now be found in a wide variety 
of application areas including chemicals, food 
processing, automotive, and aerospace applications 
(Qin and Badgwell, 2003). 
 
MPC solves an on-line optimization problem at each 
sampling time to compute the control law. Although 
more than one input move is computed, the controller 
only implements the first one. At the next sampling 
time, the optimization problem is solved again with 
new measurements, and the control input is updated 
(Maciejowski, 2002). 
 

The MPC was introduced in the 70's, and since then 
much research has been done in the subject dealing 
with feasibility and stability (Rawlings and Muske, 
1993; Scokaert, 1997; Zheng and Morari, 1995). In 
the approach proposed below, stability is based on 
the use of an infinite horizon quadratic cost problem 
and the verification under some assumptions that, at 
each step, the optimization solution remains feasible. 
 
The technique proposed in this paper, is an extension 
to the output-feedback case of the methodology 
described in Kothare, et al., (1996), where all states 
are measurable. The optimization problem is 
formulated in terms of LMIs (Boyd, et al., 1994). 
There exist already dedicated powerful (LMI) 
algorithms that allow to think that an on line solution 
is achievable, at least, for not too fast processes. The 
method allows to include input/output constraints. 
Using the concept of invariant ellipsoid, those are 
translated in the form of additional LMIs which, 
then, appear as constraints in the optimization 
problem. It is also possible to include other 
performance specifications, such as, 2H  or ∞H  
norms, in the form of LMIs constraints. 
 



The controller determination is based on the 
measurable states and a priori assumption on the non 
measurable ones which are assumed to lie in a given 
range. A kind of robustness with respect to initial 
conditions is then achieved. Also, an extension of the 
results to the case of systems with parametric 
uncertainty is featured. 
 
 

2. PROBLEM STATEMENT 
 

Consider the discrete linear time invariant system: 
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where nkx ℜ∈)( , mku ℜ∈)(  and qky ℜ∈)(  are 
respectively, the state, input and output of the 
system. nxnA   ℜ∈ , mxnB   ℜ∈  and nxqC   ℜ∈  are the 
dynamic, input and output matrices.  
 
At each sampling time k , in the MPC framework, a 
control law based on the output measurement is 
defined through a dynamic output controller: 
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where n
c kx ℜ∈)(  and the triplet ccc CBA ,, , are the 

dynamic controller matrices, i.e., at each sampling 
time, the triplet ( ccc CBA ,, ) has to be determined 
from the actual output measurements and the a priori 
assumptions to be presented later. 
 
The closed loop system from (1) and (2) is: 
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In terms of the closed loop system variables, the 
quadratic cost function is written as: 
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where ( )c
T
c RCCQQ ,blocdiagˆ = , 0>Q , 0>R  and 

)/( kikxe +  represents the prediction of ex  at instant 
ik + , given )/( kkxe . Obviously, )()/( kxkkx ee = . 

A way to overcome the problem caused by the 
uncertainty on the non measured state, is to follow a 
kind of guaranteed cost approach. For that let 
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which is determined such that at each instant k and 
0≥i , the following condition is satisfied, 
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Summing inequality (7) from 0=i  up to ∞=i  with 
the assumption of asymptotic stability 0)/( =∞ kxe , 
one gets: 
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that is, (6) is an upper bound for the objective 
function (5). The proposed algorithm, much as in 
Kothare, et al., (1996), is that of minimizing (6) 
subject to conditions that satisfy (7), at each 
sampling time. 
 
 
2.1 Characterization of the non measurable states 

 
Classically, the optimization approaches for 
controller determination, need a priori information 
about all the states. A more practical assumption is 
that of partial state information and output feedback 
control is likely more practically oriented than the 
state feedback one. 
 
For the non measurable states when no filtering or 
observer function is chosen it is sometimes assumed 
that they are random variables with given statistics 
and the optimization concerns the mathematical 
expectation of the cost. The formulation here is 
different and a range for the non measured variables 
is defined, assuming that previous information can be 
used for that purpose. Consider the partition of the 
state vector [ ] nTT

m
T

r kxkxkx ℜ∈)()(=)(  where 
p

m kx ℜ∈)(  represents the components accessible to 
measurement and pn

r kx −ℜ∈)(  is the non measured 
sub-vector. 
 
At initial time ( 0=k ), it is assumed that )0(rx  
belongs to the polyhedral convex domain: 
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be the vertices of the membership domain for )0(rx , 
i.e., the thi  component of )0(j
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the actual value of the augmented state at initial time. 
)0(Ω  is the membership domain of the augmented 

vector at initial time. Observe that: 
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In the next iteration, the system being linear 
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where )1(Ω  is the membership domain of the vector 
state at time 1=k , obviously defined by 
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or equivalently, 
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Thus, recursively at each sampling time of the MPC 
algorithm, it is possible, by simple propagation of the 
uncertainty (of membership) domain for the vector, 
to define polyhedral domains defined by 
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so that: 
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This way "of propagating" the field of membership 
of the non measured state is in coherence with the 
previous work of Kothare, et al., (1996). 
 
For practical purposes, it is interesting also to cope 
with input and output constraints. Input constraints 
may represent physical limits (such as valve 
saturation, power limitation, etc.), for instance: 
 

0 ,)/( max2 ≥≤+ iukiku  (19) 
 

Output constraints may represent performance 
requirements or safety constraints, let 

1 ,)/( max2 ≥≤+ iykiky . Vector )/( kiky + , 
represents system's predicted output at time ik + , 
based on the output at time k , )/( kky . 

3. MAIN RESULT 
 

Theorem 1. Let ljkkk jj ,,1),/()( K== χχ  and 
)/()( kkxkx cc =  be the information of the state of 

system (1) and controller (2) at sampling time k , 
and given maxy  and maxu , system (1) is stabilized by 
a dynamic controller (2), which minimize an upper 
bound for the objective function (5) under 
constraints, if there exist symmetric positive definite 
matrices n  , ℜ∈YX , and matrices qxnF   ℜ∈ , 

nxmL   ℜ∈ , nxnZ   ℜ∈ , nxnV    ℜ∈ , solutions of the 
following optimization problem: 
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Proof. 
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where 1~ −= PP γ . By Schur complement, the second  
inequality in (26) may be written as: 
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Let us partition matrices P~ and 1~−P : 
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and define the matrix: 
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Without loss of generality, matrix V  is chosen 
regular (Scherer, et al., 1997), so that T  is also 
regular. Pre multiplying (27) by TT1  and post 
multiplying it by 1T , with ( )ITT ,blocdiag1 = , 
yields: 
 

( )
0

)()()(
)(

)()(
>

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

IkxkVxkYx
kxXI

kVxkYxIY

TT
c

c

, 

(30) 
 

Inequality (30) results from a convex combination of 
(21), for any possible )(kx . Hence (20) and (21) 
follow. 
 
From (3), (6) and (7): 
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With 1~ −= PP γ  and by Schur complement operation: 
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Pre multiplying by TT2̂  and post multiplying by 2̂T : 
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L

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

TPQ
TPkKR

TPTTkKBkAPT
TPkKBkATTPT

TTT

TT

~ˆ0

~)(ˆ0

~))(ˆˆ)(ˆ(~
~))(ˆˆ)(ˆ(~

2/1

2/1 . 

0

0
0

ˆ~)(ˆ~
00

2/12/1

>

⎥
⎥
⎥
⎥

⎦

⎤

I
I

QPTRkKPT TTT

γ
γ

L  

(34) 
 

With the following change of variables: 
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(22) which is convex (linear) in the variables 
LFYX ,,,,γ and Z  is obtained. If feasibility holds, 

every predicted state fulfills: 
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that is, the ellipsoid { }γε <= Pzzz T/  is an invariant 
ellipsoid for the predicted values of the states. 
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By using Schur's complement, a sufficient condition 
for (19) to hold is: 
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which gives (23) by pre multiplication by TT1  and 
post multiplication by 1T .  
 
Similarly, considering the output: 
 

2
20

)/1(max kiky
i

++
≥

 

( )
( )

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ++=

+≤

≥++=

∈

≥

2/12/1 ~)(ˆˆˆˆˆ)(ˆˆˆ~

 , )(ˆˆˆˆmax

0  ,)/( )(ˆˆˆˆmax

max

2

2

2

20

PkKBACCkKBAP

zkKBAC

ikikxkKBAC

T

z

e
i

T
λ

ε
 

(39) 
 

then 1 ,)/( max2 ≥≤+ iykiky  if: 
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pre multiplying (40) by TT1  and post multiplying by 

1T  yields (24).   
 



Remark 1. The variables ZFLYX ,,,,,γ  in the 
problem of optimization are calculated at every 
iteration k . 
 
 
3.1 Robust stability of the system 

 
First, it is easy to see that, provided there exists a 
feasible solution, at 0=k  for (21), (22), (23), (24), 
the given approach would determine a sequence of 
feasible solutions. Indeed, at 0=k  solving an 
infinite time horizon with control and output 
restriction amounts to define a feasible control 
sequence for all subsequent time. The solution at 
each instant of the infinite time optimization problem 
would not destroy feasibility but determine a new 
feasible solution with a reduced cost. 
 
Theorem 2. (Robust stability). The dynamic 
receding horizon controller obtained from the 
solution of Theorem 1, ensures the asymptotic 
stability of the closed loop system. 
 
The stability is simply established by the fact that the 
proposed iterative procedure define a decreasing 
sequence of quadratic functions. Then 0)(~
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obtained from the optimal solutions at instant k  and 
1+k  respectively: 
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feasible at time 1+k . 
 
The obtained controller is stabilizing and because 
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If the obtained controller, at instant k  is applied 
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Thus, the sequence of functions 
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3.2 Controller construction 
 

Remark 2. From the solution of (20)-(24) the 
( )CCC CBA ,,  controller triplet can be recovered by 
inversion of the algebraic system (Geromel, et 
al.,1999). (35). The state space formulation of the 
controller depends on the choice of V  which can be 
chosen regular. The input-output relation is unique. 
 
In the given procedure the state of the controller, 
which is needed in the optimization, is recursively 
determined from (3) using the updated ( ccc CBA ,, ) at 
each step. The choice of the initial )0(cx  is left to the 
designer, 0)0( =cx  seems a reasonable one in order 
not to deteriorate the feasibility of the initial LMI set 
(21). 
 
 

4. NUMERICAL EXAMPLE 
 

The example is taken from Kothare, et al., (1996), to 
which it has been added an output relation. The 
system is composed of two masses and a spring. The 
system model is represented by (1), where: 
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1m  and 2m  are the two masses and K  is the 
constant of stiffness of the spring, 21, xx  are the 
position of the two masses, while 43, xx  are the 
velocities. The methodology is applied by 
considering: 121 === Kmm , [ ]Tx  0011)0( =  
and [ ]T

cx  0000)0( = . The other data are 
1, == RIQ  and 1max =u . The non measured states 

will belong to the following interval: 
5.0,5.0 43 ≤≤− xx . In Figure 1, it is depicted the 

behavior of 1y  and 2y  of the closed loop system 
which shows the asymptotic behavior. 
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Fig. 1. Performance profile of the output. 

 



5. DYNAMIC ROBUST CONTROLLER: 
POLYHEDRAL UNCERTAINTY 

 
It is possible to extend the procedure to the case with 
polyhedral uncertainty. Consider the discrete linear 
time system represented by (1). CBA ,,  are uncertain 
matrices with polyhedral uncertainty defined by: 
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The conditions of existence of the controller are 
given by the following theorem. 
 
Theorem 3. The condition in Theorem 1 are fulfilled 
in presence of model uncertainty if: 
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The problem is no longer linear but bilinear due to 

iZ~  term which is quadratically dependant on the 
LFYX ,,,  unknown matrices. This, of course is a 

real complexity and, although relaxation techniques 
can be used to try to solve the problem in the SDP 
and LMI context it is likely that such an approach 
could not be used for large scale and dynamically 
fast systems. 
 
 

6. CONCLUSIONS 
 

In this paper, a method for the design of an output 
dynamic controller with constraints on the input and 
the output is presented within the MPC framework. 

At each sampling time, the parameters of the 
controller are updated, by solving a convex 
optimization problem based on linear matrix 
inequalities (LMI). 
 
The concept of invariant ellipsoid is used to express 
the output and control constraints through LMI. It is 
shown that the controller ensures the stability of the 
closed loop system. 
 
The design of the controller is based on real time 
knowledge of the measured state and the bounds of 
the non measured states. Other LMIs type 
constraints, such 2H  or ∞H  norms constraints, can 
be added to the procedure. 
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