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Abstract: This paper presents an investigation into development of feed-forward and 
feedback control strategies for active vibration suppression and attitude control of 
flexible spacecrafts. The feed-forward loop consists of a computed-torque scheme and a 
command shaping technique based on component synthesis vibration suppression (CSVS) 
method which was developed based on linear systems theory. For relaxing the 
requirements of dynamic linearity in traditional input component command in CSVS 
method, a new approach is developed for designing the input component command by 
utilizing a structure in which the modal forces of flexible modes vibration are shaped 
according to a predefined trajectory, which improves the performance of CSVS method 
in vibration suppression for the nonlinear attitude dynamics. This proposed control 
strategy is practical as it does not require direct measurement of flexible appendage 
vibration, and also has a simple structure with low on-line computational load. Numerical 
simulations demonstrate the effectiveness of the control strategy. Copyright © 2005 
IFAC 
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1. INTRODUCTION 
 
Modern spacecrafts often employ large, complex, and 
lightweight structures such as solar arrays, while 
requirement for attitude control performance becomes 
more stringent. For attitude operations that require 
small control actions, reaction/momentum wheels are 
used. However, during attitude maneuver, such as 
north-south station keeping and slew, the required 
torque are normally too high for reaction/momentum 
wheels. Therefore, thrusters are normally used for 
attitude control during these maneuvers. Nevertheless, 
the on-off thrusters produce nonlinear and 
discontinuous control actions, which may excite 
flexible modes of modern spacecraft. Designing an 
on-off control system to provide the pointing 
accuracy while avoiding interaction with the flexible 
structures poses a challenging task. Research toward 
thruster control has been focused on mainly two areas: 
bang-bang control and pulse modulation, see (Vander 
and He, 1983). Bang-bang control is simple in 
formulation, but results in excessive thruster action. 
On the other hand, pulse modulators are commonly 
employed due to their advantages of reduced 

propellant consumption and near-linear duty cycles. 
On-off thruster firing, no matter the method of 
modulation, will introduce vibrations to the flexible 
structures to some degree. Effectively suppressing the 
induced vibration poses a challenging task for 
spacecraft designers. One promising method for this 
problem is to modifying an existing command so that 
it results in less or zero residual vibration of a flexible 
spacecraft. Input shaping (Singer and Seering, 1990; 
Singhose and Seering, 1996) and CSVS (Liu, et al., 
1988; Liu, et al., 1994; Shan, et al., 2004) are two 
commonly used methods to modify the input 
command to reduce vibrations of flexible structures. 
For the input shaping method, the input shaper is 
obtained by numerical value optimization so that the 
shaper is just the impulse sequences, see (Singer and 
Seering, 1990); while for CSVS method, it can have 
more forms of sequences not just impulse sequences 
by using analytical method, and the components can 
be any form.  
CSVS method is a simple but effective feed-forward 
control scheme for vibration reduction of linear 
flexible systems. However, it should be noted that 
CSVS method is derived from the superposition 



principle of linear systems. When the system exhibits 
some nonlinear dynamics, the performance of CSVS 
method may be degraded and residual vibration will 
still exist. To overcome this drawback, in this paper, a 
new approach based on CSVS method is developed 
for designing the shaped component of the modal 
forces of flexible modes vibrations for compensating 
the nonlinear flexible dynamics system. It utilizes a 
structure in which the modal forces of modal 
vibrations are shaped through predefining a reference 
trajectory that can meet the vibration suppression 
target. This approach also relaxes the requirement of 
being a linear system in CSVS method. In order to 
follow the shaped reference trajectory identically or at 
least as closely as possible, a computed feed-forward 
torque control is placed inside the feed-forward loop. 
Simulation results of a rest-to-rest maneuver of a 
flexible spacecraft demonstrate the effectiveness of 
the control strategy. 
 
2. DYNAMICS AND MANEUVER DESCRIPTION 
 
Fig.1 shows the model of a flexible spacecraft. The 
rotational motion only without any translation of the 
center of mass of the whole structure is considered in 
this paper. Define the OXY and oxy as the inertial 
frame and the frame fixed on the hub, respectively. 
The attitude angle θ denotes the relative motion 
between these two frames. Denote ( , )w x t as the 
flexible deformation at point x with respect to the 
oxy frame. It is assumed that the control torque is 
applied to the rigid hub only. 
 

 
Fig.1 Spacecraft model with single-axis rotation 
 
The governing equations of motion for the spacecraft 
model are given by, see (Liu, et al., 1994; Shan, et al., 
2004) 
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(1) 
where cI is the moment of inertia of the center body, 
ρ is linear mass density of the appendage, EI is the 

elastic rigidity of the flexible structure, tm  is the tip 
mass, b  is the radius of center body, l is the distance 
from the center origin to the tip of the flexible 
structure, and u is the control torque applied by the 
actuator located at the center hub.  

The flexible dynamics are also governed by the 
boundary conditions at the root and tip of the 
structure such as 
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The original hybrid differential equations of motion 
can be discretized into a finite dimensional 
mathematical model. Using the expansion method of 
unconstrainted modes series, the flexible 
displacement is approximated as 
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where ( )i xφ  ( 1, 2, ..., )i N=  is the ith shape functions 
to be obtained by solving a characteristic equation for 
a cantilevered beam problem, N elastic modes are 
considered and iη  is the ith generalized coordinates 
for the flexible deflection.  
The linearized second order matrix form of the 
differential equations of motion can be written as  
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unconstrained mode equations. 
 

3. CONTROL STRATEGIES 
 
3.1. PD Feedback Control 
 
In this section, PD control method is reinvestigated 
with a possible capability for the vibration 
suppression of flexible spacecraft. Considering the 
following PD control for the attitude control system 

( ) ( )p f dK Ku t θ θ θ= − − −                                (5) 

where fθ is the desired angle to be reached, the design 

parameters , 0p dK K > . 
Theorem Given the dynamics as described by 
equation (4), let the control law be computed as 
equation (5), then the equilibrium state of its closed-
loop system  
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 is globally asymptotical stable, i.e., fθ θ→ , and 

, , 0θ η η → as time t → ∞ . 



Proof: Consider the energy-based Lyapunov function 
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where fe θ θ= − . 0V = only at the system 

equilibrium state, i.e., , 0fθ θ θ= = and 0η η= = . 
The time derivative of Lyapunov function along the 
trajectories of the closed-loop system is  
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where fe θ θ θ= − = . 
At this stage, it can only be concluded that under the 
PD control, the system energy does not increase. This 
is the so-called global stability in the sense of 
Lyapunov. To prove asymptotically stable, it has to 
be shown that 0V = only at the system equilibrium 
state. As dK is positive, 0V = only when 0θ = . 
Invoking LaSalle (Khalil, 1992) invariance set 
theorem, one can see that the equilibrium state of the 
system is globally asymptotically stable.  
Note that this PD control only feeds back the attitude 
angle θ and angular rateθ , and does not require any 
information of the modal vibration. It is a model-
independent feedback control and robustness against 
model uncertainties  
 
3.2. PD Feedback Control with Smooth trajectory 
 
Although the PD control seems simple and robust as 
neither the system’s dynamics model is required nor 
is the modal vibration information fed back, this 
control strategy is of merely theoretical value for 
vibration suppression. This is because: a) the 
decaying speed of modal vibration slow as shown in 
the latter simulations, and b) more importantly, it may 
not be practical.  
One intuitive approach to effectively eliminate the 
vibration is to seek a feedback system that, while 
providing the essential smooth controls, is primarily 
targeted to control the tip displacement of flexible 
spacecraft in a way that less vibration motion should 
be induced by the center torque input. Based on this 
idea, a modified PD (Junkins and Bang, 1991; Bang, 
et al., 1999) control can be obtained in which a 
smooth reference trajectory is generated a priori, and 
the corresponding stabilizing control law is designed 
so that the reference trajectory should be tracked by 
satisfying the tip displacement constrain equation. 
The required torque is calculated by regarding the 
flexible spacecraft as a rigid body, see (Junkins and 
Bang, 1991; Agrawal and Bang, 1995;) 

( ) ( ) ( )r p r d rK Ku t u θ θ θ θ= − − − −                        (7) 

where the reference torque ru corresponds to a shaped 
bang-bang control torque profile. The mathematical 
expression of ru is given as  

 max ( , )r tot rI Nu f t tθ= = ∆                             (8) 
where the shaped torque profile function ( , )f t t∆  is 

present in Fig.2, maxN is the magnitude of the 

maximum applied torque. rθ is the reference 
trajectory, which can be built by the integration of the 
reference torque (8) twice. 
 

 
 
Fig.2 Shaped input function profile 
 
Mathematically, it can also be expressed as (Bang, et 
al., 1999) 
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   (9) 
where ft denotes the final maneuver time, and a 
useful relationship between the torque level and other 
parameters is derived as 
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The parameter (0 0.25)α α< < is a shaping 
parameter that determines the smoothness of the 
shaping action. 
The time-varying control signal in equation (7) is now 
used as an argument of the sign function as  

max( ) ( ( ) ( )r p r d rN K Ku t sign u θ θ θ θ= − − − −        (11) 
where sign is sign function. This control law 
produces a new switching function essentially 
different from that the strict minimum-time case  and 
has some flexibility through selection of feedback 
gain ,p dK K to improve the slew maneuver angle 
response. However, the reference trajectory is 
extremely sensitive to variations in spacecraft 
parameters. Moreover, the original smoothing effect 
with continuously varying control output is not 
reflected in the switching function for thrusters.  
 
3.3. CSVS Method 



 
In this section, the principle of the CSVS method is 
discussed briefly only for the integrity of this paper. 
The following lemma gives the principle of 
component synthesis vibration suppression (CSVS) 
method to design the component sequences: 
Lemma 1: Given a vibration mode with the natural 
frequency ω , period dT and damping ratio ς . 
Implementation of n  similar components, whose  
amplitudes are scaled by an attenuation factor of 

te ςω− at n time instants of 0, / , , ( 1) /d dT n n T n−  
leads to suppression of this vibration mode 
completely.  
Ideally, all vibrations can be cancelled after applying 
the CSVS commands, provided that these two 
parameters can be known exactly. In practice, 
however, due to estimation errors of these two 
parameters, vibration may still exit after applying the 
CSVS commands. A robust CSVS method is 
proposed and fully analyzed by Shan, et al.(2004). 
The robustness can be recognized by the derivative of 
the system response with respect to the parameter.  
Lemma 2: If a CSVS input command can suppress a 
vibration mode with the pth-order robustness to the 
frequency estimation error, then the new command, 
formed by synthesizing n of such commands 
according to Lemma1, can suppress the same 
vibration mode, but with the p+1th-order robustness to 
the frequency error. 
The CSVS method can also work on suppression of 
multiple modes of vibrations. The principle of 
constructing the multi-mode CSVS commands is 
similar to that of constructing the robust CSVS 
commands. The following lemma 3 gives the 
principle of constructing the multi-mode CSVS 
commands: 
Lemma 3: If a CSVS input command can suppress 
all the 1m − vibration modes, then the new command, 
formed by synthesizing n of such commands 
according to Lemma 1 to suppress the thm  vibration 
mode, can suppress all the m vibration modes. 

According to Lemma 1, Lemma 2, and Lemma 3, 
various CSVS commands can be constructed, with 
any number of components n , any order of 
robustness and any multiple modes.  
 
Feed-forward/feedback control schemes.   CSVS 
method is a simple but effective for vibration 
reduction of linear flexible systems. It should be 
noted that CSVS method is based on linear systems 
theory. When the system exhibits some nonlinear 
dynamics, the performance of CSVS method may be 
degraded and residual vibration will still exist in the 
flexible system. To overcome this drawback, modal 
forces of flexible modes vibration are used for pre-
shaping. 
Considering the lower part of Equation (5), it can be 
rearranged as  

M K Mηη ηη ηθη η θ+ = −                            (12) 

where the left side is the modal vibration dynamics, 
and the right side defines the modal forces that are 
due to the coupling flexible and rigid dynamics. As 
Mηη and Kηη are time-invariant matrices, the modal 
forces are linear with respect to modal vibrations. 
Therefore, if we can have the modal forces shaped 
with CSVS method, then vibration free movement of 
the rigid body can be achieved. As the modal forces 
are functions of rigid body trajectories only, it is 
possible to predefine a reference trajectory that meets 
the above target.  To implement such an idea, a new 
CSVS method structure is proposed as shown in Fig.3. 
In which 0θ and fθ are the spacecraft initial and 

desired final angles, respectively. Given 0θ and fθ , 

the reference trajectory rθ can be built by the 
integration of the reference torque (8) twice. Then the 
modal forces rMηθθ  can be derived. The modal forces 
pass through CSVS structure for different modes and 
the shaped components su in CSVS of the modal 
forces of flexible modes vibration are obtained. At the 
same time, the components in CSVS method can also 
be repeated for robustness. At the end, it is necessary 
to have an iteration loop to ensure that the spacecraft 
will stop at its desired angle within the desired 
settling time, i.e., ( ) ( )s f f ft tθ θ= and ( ) 0s ftθ = , 

where sθ is the shaped trajectory by CSVS method. In 
order to accomplish better control performance, the 
computed feed-forward torque control is used to 
follow the shaped reference trajectory identically or at 
least as closely as possible. 
 

 
 
Fig.3 CSVS-based shaped modal forces 
 

Combining a PD feedback control and regarding 
the spacecraft as rigid body, we have the following 
control law: 

( ) ( )tot s p s d sI K Ku θ θ θ θ θ= − − − −             (13) 
which is actually the same as Equation (8). Instead of 
using a smooth reference trajectory, the CSVS 
method is utilized to generate a more sophisticated 
rigid body trajectory. The control block diagram is 
shown in Fig.4. 
 

 
 
Fig.4 Feed-forward/feedback control structure 
 
 



4. SIMULATION RESULTS 
 
The spacecraft simulation involves a single-axis 
rest-to-rest maneuver. The parameters for the 
simulated flexible spacecraft are given in the Ref. 
[7]. In this simulation, the flexible spacecraft is 
commanded to perform a 120º slew. For comparative 
purposes, three different cases of a 120º slew of the 
flexible spacecraft are conducted: (1) slew using the 
direct PD control as given in Section 3.1, (2) slew by 
applying the PD control along a smooth reference 
trajectory that is computed by a shaped bang-bang 
control torque profile, (3) slew using feed-
forward/feedback control based on shaped modal 
forces.  
First, the PD control is employed in the attitude 
control to slew the flexible spacecraft for120º. The 
angular displacement of the rigid body is shown in 
Fig.5 (a). Large overshoot of the slew angle resulted 
and the final desired angle was achieved after the 
maneuver. The vibrations of the first two flexible 
modes and control command are reflected in Figs.5 (b) 
and (c).  
 

 
Fig.5 (a) Center body angle response with PD control 
 

 
Fig.5 (b) Response of flexible modes with PD control 
 

 
 
Fig.5 (c) Control command with PD control 
 

Then the same control parameter is repeated with the 
PD control along a smooth reference trajectory. The 
results are shown in Fig.7. It is clear, from 
comparison of Fig.6 and Fig.7, the vibrations of the 
first two modes in Fig.7 (b) are smoother and less 
oscillatory than that in Fig.6 (b). This reflects the 
advantage of the case (2) over the case (1) for the 
vibration suppression. But there are a lot of control 
switches as shown in Fig.7 (c) and some little 
overshoot of the slew angle shown in Fig.7 (a).   
 

 
Fig.6 (a) Center body angle response with PD and 

smooth trajectory 
 

 
Fig.6 (b) Response of flexible modes with PD and 

smooth trajectory 
 

 
Fig.6 (c) Control command with PD and smooth 

trajectory 
 
To demonstrate the improved performance of the 
CSVS method and to evaluate the capability of the 
control strategy working with the new components in 
the CSVS method, a 120 º  slew of the flexible 
spacecraft using feed-forward/feedback control is 
conducted. The control parameters for the attitude 
control remain the same for a fair comparison, and the 
same reference trajectory with case (2) are used for 
the case (3). The system responses to the shaped 
modal forces are plotted in Fig.7. As compared with 
Fig.6, little vibrations of the first two flexible modes 



are observed, and there is no overshoot of the slew 
angle. This shows the effectiveness of the feed-
forward/feedback control based on shaped modal 
forces for active vibration suppression. 
 

 
Fig.7 (a) Center body angle response with feed-

forward/feedback control  

 
Fig.7 (b) Response of flexible modes with  feed-

forward/feedback control 
 

 
Fig.7 (c) Control command with feed-forward 

feedback control 
 

5. CONCLUSIONS 
 
The development of feed-forward and feedback 
control strategies for active vibration suppression and 
attitude control of a flexible spacecraft using 
modified CSVS method during attitude maneuver, 
respectively, have been proposed. A simple PD 
feedback control has been addressed to stabilize the 
attitude control system of flexible spacecraft. 
However, it is not effective in modal vibration 
suppression. Then, an attractively smooth 
approximation of sign function has been introduced to 
modify the admissible PD control law. Nevertheless, 
the trajectories are very sensitive to the variation in 
spacecraft parameter. Based on shaped modal forces 
of flexible modes vibration through predefining a 
reference trajectory that can meets the vibration 
suppression, a new modified CSVS method is 
developed for compensating for the nonlinear attitude 

dynamics. This approach relaxes the requirement of 
being a linear system in components design. To 
enhance the control robustness against model 
uncertainties, an independent feedback control is also 
used to further eliminate any residual vibration on the 
flexible appendage. As compared with these 
differences methods, performances of the techniques 
have been evaluated in terms of level of vibration 
reduction, speed of the response, and robustness 
through.  
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