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Abstract: In this paper, robust stabilization of an experimental system is considered. 
This system consists of a pendulum free to rotate 360 degrees that is attached to a cart. 
The cart can move in one dimension. The linearized model of the system is used and 
transformed to a linear diagonal form. The system is separated into slow and fast 
subsystems. The fast dynamics are treated as a disturbance and this is used to design a 

∞H   controller for a system with lower order than the original system. Copyright © 
2005 IFAC   
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1. INTRODUCTION 
 
Van der Schaft (1992) indicated that in control of 
nonlinear systems, if the ∞H control problem for the 
linearized system is solvable, then one obtains a local 
solution to the nonlinear ∞H control problem.  One 
problem with ∞H  designs is that the order of the 
controller is at least the order of the plant, and larger 
if, as is common, weights are included in the design.  
 
An approach to reduced order controller design based 
on the idea that one can consider the fast dynamics of 
a system as disturbances is first introduced by Khalil 

(1996) and then is discussed by Yazdanpanah et al. 
(1997) and Yazdanpanah and Karimi (2002). In this 
paper the fast, stable part of the system is considered 
as uncertainty and then the controller is designed for 
the remaining part of the system. The remaining slow 
subsystem has order less than the original one. The 
only information must be known, is the ∞H  norm of 
the fast subsystem. The part of the system regarded 
as uncertainty is not entirely arbitrary since the small 
gain theorem must hold. 
Most systems have a lower gain in high frequencies 
than in the low frequencies and so this approach has 
wide applicability. No other dynamical information is 



 

required.  This is advantageous since in general the 
high frequency aspect of a model is not well 
determined. With this idea, one can use the ∞H  
method to design a robust controller using the slow 
subsystem as the nominal plant. The proposed 
method is applied to a flexible joint robot 
manipulator by Amjadifard et al. (2003), and the 
simulation results showed the desired behavior of 
system. 
 
In this work the approach to an unstable system is 
extended. The stabilization of an inverted pendulum-
cart is considered. First, the nonlinear part of the 
system is eliminated since it is stable and small. 
Then, the linearized model is transformed to Jordan 
canonical form and the slow and fast modes are 
separated. The stability of the controlled system was 
verified on an experimental apparatus. The 
performance is shown to be superior to a linear 
quadratic regulator previously implemented by 
Landry et al. (2003). 
 
 

2. SYSTEM DEFINITION 
 
A pendulum is attached to the side of a cart by means 
of a pivot that allows the pendulum to swing in the 
xy-plane over 360 degrees. (See Fig. 1.) A force 

)(tF  can be applied to the cart in the x direction. In 
Table 1 there is a complete list of notation. 
  
The equations of motion for the system are (which is 
mentioned, e.g. by Landry et al., 2003) 
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Parameter values for the apparatus that is made by 
Quanser Consulting Inc. (1996) are given in Table 2. 
 
Based on previous experiments, a value 8=ε  for the 
friction parameter was used. 
 

 
Fig. 1. Inverted pendulum system 
 
 

Table 1. Notation 
 

)(tx  Displacement of the centre of mass of the 
cart from point O 

)(tθ  Angle the pendulum makes with the top 
vertical 

M  Mass of the cart 
m  Mass of the pendulum 
L  Length of the pendulum 
l  Distance from the pivot to the centre of 

mass of the pendulum 
P  Pivot point of the pendulum 

)(tF  Force applied to the cart 
 

Using the state variables  
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equations (1) can be written in first-order form as 
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The force )(tF  on the cart is due to a voltage V(t) 
applied to a motor: 
 

)()()( txtVtF &βα −= . (4) 
 
The second term is due to electrical resistance in the 
motor. The physical constants are 
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The voltage )(tV can be varied and is used to control 
the system. The model for the controlled system 
linearized about the upright position is 
 

)t(bVAXX +=&  (5) 
Where 
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Table 2. Values of parameters  
 

Parameter Value Description 
Mw  0.360 Kg Weight mass 

M  0.455 Kg+ Mw  Mass of the cart 
m  0.210 Kg Mass of the 

pendulum 
L  0.61 m Length of the 

pendulum 
g  9.8 m/s Acceleration due to 

gravity 
ε  Unknown Viscous friction 

mK  0.00767 
V/(rad/sec) 

Motor torque and 
back emf constant 

gK  3.7 Gearbox ratio 
R  2.6 Ω  Motor armature 

resistance 
d  0.00635 m Motor pinion 

diameter 
 
It is well-known (e.g. as indicated by Landry et al., 
2003) that for the uncontrolled system (V(t)=0 ), the 
cart-pendulum at rest in any upright position (x,0,nπ, 
0) is at an unstable equilibrium point. 

 
 

3. ∞H  CONTROLLER DESIGN 
 
A similarity transformation TyX =  is used, where T 
contains the system eigenvectors, to  transform A  
into Jordan canonical form. Equation (5) becomes 
 

)(tBVJwy +=&  (7) 
 
where ATTJ 1−=  is a diagonal matrix of system 
eigenvalues and bTB 1−= . 
 
The system of equations (7) can be decomposed into 
fast and slow subsystems 
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where },74.4,5,0{11 −=Λ diag  and 33.1822 −=Λ . 
The vector B  is a permutation of elements of 1B  
and 2B .  Here 1X   indicates the slow dynamics of 
system and 2X the fast dynamics of system. The 
nominal system with no disturbance can be written 
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where it is assumed full information, so that the 
controlled output, Z,  is  
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and the measured output is 
  

22112 XDXCY +=  
 
where C2  is chosen to be I. 
 
As mentioned earlier the stable subsystem with fast 
dynamics will be considered as uncertainty ∆ . This 
means rewriting the system (8) is needed so that the 
fast dynamics appear as disturbance to the nominal 
system. 
 
A state transformation TT ]X,X[M]X,X[ 2121 =   is 
applied to the system, where M has the structure 
 

⎥⎦
⎤

⎢⎣
⎡=

22

1211
0 M

MMM . 

 
The equations of system (8) after transformation are 
(see Fig. 2) 
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The new equation for the fast sub-system, or 
uncertainty block, is 
 

uBXX 22222 +Λ=& . 
 
Note that the coefficient of 1X  in the fast sub-system 
is zero. Also, the equations for the slow sub-system, 
or nominal block, become 
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In Fig. 2, Z is the input to the uncertainty block. 
 
The fast dynamics are exponentially stable. 
Indicating the transfer function by 
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where 301.01 =γ . 
 
Since  B)sI(CB)sI(C)s( 2

1
2222

1
222

−− Λ−=Λ−=∆ , 
the ∞H -norm of the uncertainty block is 1γ = 0.301.  
 
The ∞H controller design problem for the system 
shown in Fig. 2, will lead to a ∞H  controller for the 
slow sub-system. The ∞H  controller will be 
designed here via state feedback (or full-
information). The next step is to determine 

γγ min2 = , where 2γ  indicates the ∞H -norm of the 
controlled slow sub-system, and a corresponding 
controller that achieves this.  The transformation M  
must be chosen so 1. 21 <γγ . By trial and error, a 
suitable transformation was found: 
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It is straightforward to verify that the slow sub-
system is stablizable and detectable. As indicated by 
Doyle et al. (1989), it then follows that  2γ  is the 
smallest value of γ  such that that the eigenvalues of 
the Hamiltonian matrix  
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are not on the imaginary axis.  Doyle et al. (1989) 
also have shown that for any 2γ>γ  , there is an  
 
 

 
 
Fig. 2. Block diagram of system with fast dynamics 

as uncertainty 
 

internal stabilizing controller such that γ≤
∞2XzT  if 

and only if there is a positive semi-definite solution 
∞X  of  the algebraic Riccati equation: 
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In this case, a suitable feedback is 
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4. EXPERIMENTAL RESULTS 
 
The ∞H controller of equation (10) is applied to the 
pendulum system. Only the position of the cart and 
the pendulum angle can be measured. An observer is 
required to obtain x&  and θ& . In order to compare to 
the results shown by Landry et al. (2003), the same 
Luenberger observer was used. The same linear-
quadratic regulator (LQR) used by Landry et al. 
(2003) was used as a comparison for the ∞H  state-
feedback controller designed using the slow-fast 
approach in this paper (or for simplicity, the 'slow-
fast controller'). 
 
The controlled pendulum angle and the cart position 
are shown in Fig. 3. The equilibrium 1x  (cart 
position) is arbitrary, as can be seen from equation 
(3).  
 
In Fig. 4, the input controller signals, produced by 
the slow-fast and the LQR controllers, are shown. 
Although the performance of the two controlled 
systems is similar, the slow-fast controller achieves 
this performance with a smaller controller signal and 
also with a system of lower degree.  
The response of the controlled pendulum system to a 
disturbing “tap” on the pendulum controller was 
investigated for each controller. Fig. 5 shows the 
angular position of pendulum and the cart position 
under this disturbance.  
 
In Fig. 6, the behavior of the two controlled systems 
with a time delay of 0.035 seconds in the controller 
output is shown.  
 
The performance of the slow-fast controller is 
superior to that of the LQR controller for both the 
disturbed and delayed systems.  
 
 

5. CONCLUSIONS 
 
In this paper the robust stabilization of an 
experimental pendulum systems using slow-fast 
decomposition approach is considered. First using the 
linearized model, it was transformed to a diagonal 
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form and the slow and fast modes of system were 
separated. Then considering the fast dynamics as 
norm-bounded uncertainty, a ∞H  controller for the 
reduced order system (slow subsystem) was 
designed. The resulting controller was implemented. 
 
Experimental results indicate that the performance is 
superior to the full-order LQR controller previously 
used.  
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Fig. 3. System behavior via the two controllers 

without any additional disturbance or noise. 
 

 
 
Fig. 4. The input controller signal, produced by the 

two controllers in a condition without any 
additional disturbance or noise. 

 



 

 

 
 
Fig. 5. The behavior of pendulum system with an 

additional disturbance on pendulum via the two 
controllers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 6. Pendulum system behavior with a transport 

delay of 0.035 sec. in the controller output. 


