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Abstract: In this paper the problem of simultaneous reconstruction of the state,
the sensor fault and the uncertainty in linear systems is considered. Inspired by
the idea in chaotic masking, one scheme for chaotic secure communication, this
paper proposes a new scheme to resolve the above problem. Together with iterative
learning strategy, the generalized state observer proposed in chaotic masking
can be used to simultaneously reconstruct the state, the sensor fault and the
uncertainty. Theoretical analysis and numerical simulations verify the effectiveness
of this scheme. Copyright c©2005 IFAC
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1. INTRODUCTION

In the past couple of decades, much attention has
been paid to the problem of robust sensor fault
detection and isolation (FDI). A number of in-
teresting robust sensor FDI problem formulations
have been proposed (Frank, 1990; Gertler, 1988;
Nikoukhah, 1994; Piercy, 1992). In addition, an
augmentation approach was used for representing
any sensor faults in the form of actuator faults
for an augmented system, thereby permitting the
use of actuator FDI methods to accomplish sensor
FDI under some conditions (Saif and Guan, 1993;
Park et al, 1994). It is well known that sensor FDI
has some special properties that are different from
those for actuator FDI. The response of sensor
faults can not be restricted to a line direction in
general by using a detection filter, but only to a

plane. Xiong and Saif (2000) illustrated some in-
herent difference between sensor FDI and actuator
FDI although the FDI system design approach can
be almost the same. It showed that the augmen-
tation didn’t not improve the isolability of sensor
faults, that is to say, the isolation condition for the
augmented system was often stricter than that for
the original system.

Recently, chaotic systems attracted lots of atten-
tion in the nonlinear field. Chaotic systems are
simple deterministic nonlinear systems behaving
complex, noise-like and unpredictable behavior.
Among many studies on chaotic systems, chaos
synchronization is one of the main topics. Chaos
synchronization is defined as the synchronization
between two identical or different chaotic sys-
tems. As reported in the literature (Morgul, 1999;
Morgul et al, 2003; Liao and Huang, 1999), chaos



synchronization suggests possibility for communi-
cation using chaotic waveforms as carriers. Due
to the fact that chaotic signals are noise-like and
unpredictable in nature, such signals can be used
to establish a potentially secure means of com-
munication. One approach employed to achieving
secure communication uses a chaotic signal to
mask the message signal (Morgul, 1999; Morgul
et al, 2003; Liao and Huang, 1999), which can be
realized via an observer based chaos synchroniza-
tion schemes. The message signal hidden in trans-
mitter can be recovered by a suitable receiver. In
some chaotic masking schemes (Boutayeb et al,
2002; Liao and Huang, 1999), the hidden message
signal could be regarded as the sensor fault, which
is recovered or reconstructed via an observer.

As far as we known, many robust sensor FDI
schemes only consider the reconstruction of the
state and the sensor fault. They can be estimated
if the uncertainty in dynamical system is bounded
by a known bounding function or decoupled from
the uncertainty. Scarce papers consider the prob-
lem of simultaneous reconstruction of the state,
the sensor fault and the uncertainty in dynamical
systems. Borrowing the idea from chaotic masking
(Boutayeb et al, 2002), one scheme for chaotic
secure communication, this paper proposes a new
scheme to resolve the above problem. Together
with the iterative learning strategy (Chen and
Saif, 2001, 2002, 2003), the generalized state ob-
server proposed in chaotic masking (Boutayeb et
al, 2002) can be used to simultaneously recon-
struct the state, the sensor fault and the uncer-
tainty in linear systems under some mild con-
ditions. The special structure of the generalized
state observer ensures that the scheme for FDI
has no any restrictions on sensor faults.

2. PROBLEM FORMULATION

Let us consider uncertain linear systems given by

ẋ = Ax+Bu+ η(t)
y = Cx+Df(t)

(1)

where x ∈ Rn is the state vector of the system,
u ∈ Rm is the control input vector, y ∈ Rr is
the output vector, f ∈ Rp(p ≤ r) is the sensor
fault vector, A, B, C and D are matrices with
appropriate dimensions. Further, the uncertainty
η(t) ∈ Rn stands for actuator faults or component
faults in system (1).

In this paper we consider the problem of simul-
taneous reconstruction of the state x, the sensor
fault f and the uncertainty η in system (1). This
means that the uncertainty η can be estimated ap-
proximately while the state x and the sensor fault
f are reconstructed without residual generation.

In order to do, system (1) must satisfy the fol-
lowing assumptions A1 and A2.

A1: In system (1) matrix D is full column rank.
Moreover, the uncertainty vector η(t) can be norm
bounded by a known positive constant δ, namely
||η(t)|| < δ.

A2: For arbitrary complex number µ with Re(µ) ≥
0, the following condition holds:

rank

(

µIn −A 0
C D

)

= n+ rank

(

0
D

)

= n+ p

(2)

3. MAIN RESULT

In this section we will consider the problem of
simultaneous reconstruction of the state, the sen-
sor fault and the uncertainty in system (1). The
combination of the generalized state observer pro-
posed in chaotic masking (Boutayeb et al, 2002)
and the iterative learning strategy (Chen and Saif,
2001, 2002, 2003) can effectively resolve this prob-
lem.

3.1 The Augmentation Strategy

Among many works, one way to deal with the
sensor faults f is the augmentation strategy (Saif
and Guan, 1993; Park et al, 1994). Any sensor
fault can be regarded as an actuator fault in an
augmented system, thereby permitting the use of
actuator FDI methods to accomplish sensor FDI.
The augmentation strategy can be explained as
the following proposition:

Proposition 1 (Saif and Guan, 1993; Park et al,
1994): For any piecewise continuous vector func-
tion f ∈ Rp, and a stable p × p matrix Af , there
will always exist an input ζ ∈ Rp such that

ḟ = Aff + ζ (3)

Augmenting system (1) with system (3) results in
the following n+ p dimensional system

(

ẋ

ḟ

)

=

(

A 0
0 Af

)(

x

f

)

+

(

B

0

)

u+
(

In
0

)

η +

(

0
Ip

)

ζ

y =
(

C D
)

(

x

f

)

(4)

Note that the uncertainty in the augmented sys-
tem (4) includes two parts: one is the original un-
certainty η; another is the additional uncertainty
ζ via the augmentation. Further, the additional
uncertainty ζ is totally unknown.



Based on the augmented system (4), the problem
of reconstructing the state and the sensor fault
can be resolved by the UIO method (Xiong and
Saif, 2000; Saif and Guan, 1993; Park et al, 1994),
the learning system approach (Polycarpou and
Helmicki, 1995) and the iterative learning esti-
mator (Chen and Saif, 2001, 2002, 2003). How-
ever, the information on the original uncertainty
η in system (1) could not be derived because
the uncertainty in system (4) includes additional
uncertainty ζ owing to the augmentation strategy.
Further, Xiong and Saif showed that the above
augmentation didn’t improve the isolability of
faults (Xiong and Saif, 2000). That is to say, the
isolation condition for the augmented system is
often stricter than that for the original system.

3.2 The Generalized State Observer

In chaotic masking literature, Boutayeb et al
(2002) proposed a generalized state observer to
estimate the state and the hidden message signal
when there exists no uncertainty in the trans-
mitter. In this paper, together with the iterative
learning strategy, this kind of observer can be
applied to resolve the problem of simultaneous
reconstruction of the state, the sensor fault and
the uncertainty. The following symbols are similar
to those in Boutayeb et al (2002). Let

E = [In 0], H = [C D] and M = [A 0] (5)

Because matrix D is full column rank, matrices P
and Q can be constructed as follows

[P Q] =

[

(

E

H

)T (
E

H

)

]−1
(

E

H

)T

(6)

Hence we have the following relationship:

PE +QH = In+p (7)

Let the augmented states be ξ = col(x, f). For
system (1), a generalized state observer is con-
structed as

ż = Nz + Ly + PBu+ Pv

ξ̂ = z +Qy
(8)

where matrices N and L are to be determined.
Further, the iterative learning estimator v(t) is
selected as

v(t) =







K1v(t− τ) +K2(y(t− τ)

−Hξ̂(t− τ)), t > τ

0, t ≤ τ

(9)

where τ > 0 is a time delay constant, K1 ∈ Rn×n

and K2 ∈ Rn×r are to be determined, y(t−τ) and

ξ̂(t− τ) denote the outputs of previous time.

Let the error signal be e = ξ̂ − ξ. Hence we have

e = ξ̂ − ξ = z +Qy − ξ = z +QHξ − ξ

= z + (QH − In+p)ξ = z − PEξ

Therefore the error dynamics is

ė = Nz + LHξ + PBu+ Pv − PE

×

[(

M

∗

)

ξ +

(

B

∗

)

u+

(

In
∗

)

η

]

= N(e+ PEξ) + LHξ − PMξ + Pv − Pη

= Ne+ (N + FH − PM)ξ + Pv − Pη

where F = L − NQ, and the signal “ ∗ ” stands
for the unknown term with respect to the sensor
fault f . Choosing matrix N = PM − FH, then
we have

ė = Ne+ Pv − Pη (10)

Remark 1. From above analysis, the generalized
state observer based FDI method only requires
the full column rank of matrix D, which ensures
the existence of matrices P and Q. Compared
with the augmentation strategy (Xiong and Saif,
2000; Saif and Guan, 1993; Park et al, 1994), this
method has no any restrictions on the sensor fault
f because of the special structure of observer (8),
namely the special relationship (7).

Before we give the result, two lemmas should be
given as follows:

Lemma 1 (Boutayeb et al, 2002). Matrix N is
stable if and only if Assumption A2 holds, i.e., the
system (A,B1, C,D) is of minimum phase where
B1=0.

Lemma 2 (Chen and Saif, 2001, 2002, 2003). If
the iterative learning estimator is chosen as (9),
the following inequality holds:

vT (t)v(t) ≤ 2vT (t− τ)KT
1 K1v(t− τ)

+2eT (t− τ)(K2H)T (K2H)e(t− τ)
(11)

Now we give our main result.

Theorem 1. For system (1) and its observer (8)
with the iterative learning estimator (9), suppose
that Assumptions A1 and A2 hold. The error e(t)
of system (10) can be bounded if the following
conditions are satisfied:
(i) Matrix F is chosen to make N = PM − FH

be Hurwitz stable, and L = F +NQ;
(ii) Matrices K1 and K2 satisfy

4(K2H)T (K2H) ≤ R1 and 4KT
1 K1 ≤ In (12)

where R1 ∈ R(n+p)×(n+p) is a symmetric positive
definite matrix.
(iii)For a given symmetric positive definite matrix
Q1 = QT

1 ∈ R(n+p)×(n+p), the following algebraic
equation has one unique symmetric positive defi-
nite matrix solution P1 ∈ R(n+p)×(n+p):

NTP1 + P1N + P1PPTP1 +R1 = −Q1 (13)

Proof: Under condition (i), it can be deduced from
Lemma 1 that matrix N can be Hurwitz stable.



For the error dynamics (10), let a Lyapunov
function be

V (t) = eT (t)P1e(t) +

∫ t

t−τ

eT (θ)R1e(θ)dθ

+

∫ t

t−τ

vT (α)v(α)dα

So its derivative with respect to time is

V̇ = ėTP1e(t) + eT (t)P1ė(t) + eT (t)R1e(t)

−eT (t− τ)R1e(t− τ) + vT (t)v(t)

−vT (t− τ)v(t− τ)

= eT (t)[NTP1 + P1N +R1]e(t)

+2eT (t)P1Pv(t)− 2eT (t)P1Pη

−eT (t− τ)R1e(t− τ) + vT (t)v(t)

−vT (t− τ)v(t− τ)

Since

2eT (t)P1Pv(t) ≤ 2||eT (t)P1P || · ||v(t)||

≤ eT (t)P1PPTP1e(t) + vT (t)v(t)

we have

V̇ ≤ eT (t)[NTP1 + P1N + P1PPTP1 +R1]e(t)

+2vT (t)v(t)− eT (t− τ)R1e(t− τ)

−vT (t− τ)v(t− τ) + 2δ||P || · ||P1|| · ||e(t)||

From Lemma 2, we get the following inequality

V̇ ≤ eT (t)[NTP1 + P1N + P1PPTP1 +R1]e(t)
+2δ||P || · ||P1|| · ||e(t)||

+vT (t− τ)(4KT
1 K1 − In)v(t− τ)

+eT (t− τ)(4(K2H)T (K2H)−R1)e(t− τ)

From conditions (ii) and (iii), the above inequality
becomes

V̇ ≤ −eT (t)Q1e(t) + 2δ||P || · ||P1|| · ||e(t)||

≤ −λmin(Q1)e
T (t)e(t) + 2δλmax(P1)||P || · ||e(t)||

in which λmin(·) and λmax(·) stand for the mini-
mum and maximum eigenvalues of a matrix, re-
spectively. Therefore if

||e(t)|| ≥
2δλmax(P1)||P ||

λmin(Q1)
(14)

we have V̇ < 0.

Summing up the above analysis, the error e(t) can

be bounded by the constant 2δλmax(P1)||P ||
λmin(Q1)

as the

time tends to infinity. ¤

3.3 Estimation of Uncertainty η

From the proof of the above theorem, the error
e(t) and its derivative ė(t) are bounded, which
results in the boundedness of Pv − Pη, thereby
the term Pv can approximately estimate the un-
certain term Pη. Moreover, error dynamics (10)
between system (1) and its observer (8) only in-
cludes the information on the original uncertainty
η, which is important to reconstruct this uncer-
tainty. Now we conclude that the original uncer-
tainty η can be estimated by the iterative learning
estimator (9) in the sense of least mean square.

From the proof of Lemma 1 given by Boutayeb et
al (2002), matrix P satisfies

P = Ψ

(

In
0

)

,whereΨ =

(

In + CTC CTD

DTC DTD

)−1

(15)
Thus, we have

Ψ−1P =

(

In
0

)

(16)

From the above two equations, we obtain

Rank(P ) = Rank

(

In
0

)

(17)

It means that matrix P is of full column rank.
According to Theorem 1, error system (10) is
practically stabilized. Denote O(e) = Pv − Pη

where O(e) is due to the bounded errors e(t) and
ė(t). This implies that

v − η = (P TP )−1PTO(e)

In other words, the original uncertainty η can be
reconstructed by the iterative learning estimator
v in the sense of least mean square, that is to say

η̂ ≈ v (18)

where η̂ is the estimated uncertainty.

4. NUMERICAL SIMULATION

In this section, one simple two-dimensional linear
system is illustrated to show the effectiveness of
the proposed method. Its dynamics is described
by

ẋ = Ax+Bu+ η

y = Cx+Df
(19)

where

A =

[

−2 1
1 −4

]

, B =

[

1 2
−1 1

]

, C =

[

1 −1
1 1

]

D =

[

−2
2

]

and η =

[

0.02sin(t)
0.005sin(t)

]

In system (19), the sensor has an abrupt fault
given by

f =

{

0, t ≤ 20 s
0.01, otherwise

(20)

Clearly, system (19) satisfies Assumption A2.
Therefore, matrices P , Q, N and L in observer
(8) can be selected as follows:

P =





0.3333 0
0 1.0000
0 −0.5000



 , Q =





0.3333 0.3333
0 0

−0.2500 0.2500





N =





−14.1768 0.1089 −0.4489
33.3408 −5.9411 −3.8822
−17.1354 −4.9410 −13.8821





L =





2.0295 2.0295
−6.0568 −6.0568
3.1059 3.1059
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Fig. 1. The estimate errors on states
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Fig. 2. The real (solid line) and reconstructed (da-
shed line) faults

The iterative learning estimator v(t) is selected as
(9), in which the time delay constant τ1 = 0.02,

K1 =

[

0.5 0
0 0.5

]

and K2 =

[

0.3 0.2
0 0.2

]

In this simulation the initial conditions for system
(19) and its observer (8) are chosen as (0.5 −0.5)T

and (−0.5 0.2 − 0.4)T , respectively. Simulation
results are shown in figures 1 to 3. In figure 1, the
estimation errors of states xi(i = 1, 2) approach
the origin. Figure 2 shows the results of the real
and reconstructed abrupt fault (20). The solid and
dashed lines represent the real and reconstructed
faults, respectively, which means that this abrupt
fault can be reconstructed approximately. In fig-
ure 3, the real uncertainty η and the iterative
learning control (9) are plotted. From

these figures, we conclude that the combination
of the generalized state observer and the iterative
learning strategy can simultaneously reconstruct
the state, the sensor fault and the uncertainty.

5. CONCLUSION

This paper considers the problem of simultaneous
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Fig. 3. The estimate errors on states

reconstruction of the state, the sensor fault and
the uncertainty in linear systems. Borrowing from
the idea in chaotic masking, this paper proposes
a new scheme to resolve the above problem. The
combination of the generalized state observer pro-
posed in chaotic masking and the iterative learn-
ing strategy can simultaneously reconstruct the
state, the sensor fault and the uncertainty. The-
oretical analysis and numerical simulations verify
the effectiveness of this scheme.

6. ACKNOWLEDGEMENT

This work was supported mainly by the NSFC
(Grant No. 60025307, 60234010), RFDP (Grant
No. 20020003063), the national 973 program
(Grant No. 2002CB312200) of China and China
Postdoctoral Science Foundation (20040350081).

7. REFERENCES

Boutayeb, M., M. Darouach and H. Rafaralah-
y (2002). Generalized state-space observers for
chaotic synchronization and secure commu-
nication. IEEE Transaction on Circuits and

Systems-I 49 (3), 345-349.
Edwards, C., S. K. Spurgeon and R.J. Patt-

on 2000). Sliding mode observers for fault
detection and isolation. Automatica 36, 541-
543.

Frank, P. M. (1990). Fault diagnosis in dynami-
c systems using analytical and knowledge-
based redundancy-a survey and some new
results. Automatica 26, 459-474.

Gertler, J. J. (1988). Survey of model-based fai-
lure and isolation in complex plants. IEEE

Control Systems Magazine 8, 3-11.
Ioannou, P. A. and J. Sun (1996). Robust adapt-

ive control. Englewood Cliffs, NJ: Prentice
Hall.

Liao, T. and N. Huang (1999). An observer ba-



sed approach for chaotic synchronization with
application to secure communications. IEEE

Transaction on Circuits and Systems-I 46,
1144-1150.

Morgul, O. (1999). Necessary condition for obse-
rver based chaos synchronization. Physical Re-

view Letters 82, 169-176.
Morgul, O., E. Solak and M. Akgul (2003). Ob-

server based chaotic message transmission. In-

ternational Journal of Bifurcation and Chaos

13, 1003-1017.
Nikoukhah, R. (1994). Innovations generation in

the presence of unknown inputs: application to
robust failure detection. Automatica 30, 1851-
1867.

Park, J., G. Rizzoni and W. Ribbens (1994). On
the representation of sensor faults in fault
detection filters. Automatica 30, 1793-1795.

Piercy, N. P. (1992). Sensor failure estimation f-
or detection filters. IEEE Transaciton on Au-

tomatic Control 37, 1553-1558.
Polycarpou, M. M. and A. J. Helmicki (1995). A-

utomated fault detection and accommodation:
a learning systems approach. IEEE Transac-

tion on Systems, Man and Cybernetics 25,
1447-1458.

Saif, M. and Y. Guan (1993) A new approach
to robust fault detection and identification.
IEEE Transaction on Aerospace and Elec-

tronic Systems 29(3), 685-695.
Slotine, J. E. and W. Li (1990) Applied Nonline-

ar control. Englewood Cliffs: Prentice-Hall.
Xiong, Y. and M. Saif (2000). Robust fault dete-

ction and isolation via a diagnostic observer.
International Journal of Robust Nonlinear

Control. 10, 1175-1192.


