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Abstract: A number of indicators for the determination of the disturbance
rejection capability of a system have been proposed in the literature in the last
two decades. These tools are useful for evaluating early stage process designs
and screening regulatory control structures, since they are based on minimal
modelling requirements. In previous publications (Hovd and Braatz, 2000; Hovd
et al., 2003; Kookos and Perkins, 2003), it has been shown how to evaluate
at steady state the disturbance rejection measures proposed by Skogestad and
Wolff (1992). If acceptable values for these disturbance rejection measures are
not achieved, no controller can achieve satisfactory control. In this paper, it is
shown how to obtain upper and lower bounds for these disturbance rejection
measures also as a function of frequency. The upper and lower bounds can be
made arbitrarily accurate at the expense of increasing the size of the optimization
problems involved. Copyright c©2005 IFAC
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1. INTRODUCTION

The importance of designing processes which can
be acceptably controlled is widely recognized, and
has been studied by many researchers (Fisher et
al., 1988; Hovd and Skogestad, 1992; Straub and
Grossmann, 1993; Braatz et al., 1996; Heath et al.,
2000; Ma et al., 2002). A significant consideration
is whether it is possible to reduce the effect
of disturbances to an acceptable level using the
available manipulated variables. Three relevant
questions in this context are:

(1) What is the minimum output error that is
obtainable for the worst possible combination
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of disturbances with the optimal use of the
manipulated variables?

(2) What is the minimum required magnitude
for the manipulated variables to obtain an
acceptable output error for the worst possible
combination of disturbances?

(3) What is the smallest disturbance for which
the minimum output error is of the maximum
acceptable magnitude, provided the manipu-
lated variables are used optimally?

While the mathematical formulation of each of
these questions in terms of optimization problems
has been provided (Wolff, 1994; Skogestad and
Wolff, 1992), no explanation was given on how
to solve the resulting optimization problems. The
calculation of these measures is non-trivial even
for linear plants, and only recently have meth-



ods for calculating these measures been proposed.
Hovd and Braatz (2000) present a non-convex
optimization formulation. Although global opti-
mization software is required, the resulting opti-
mization problem can be solved in acceptable time
for problems of moderate size (i.e. up to about
12× 12). An alternative approach is presented by
Kookos and Perkins (2003), who present mixed-
integer linear programming (MILP) formulations
for the same problems.

Pervious publications have shown how to calculate
the disturbance rejection measures at steady state
only. This paper presents how to obtain upper
and lower bounds for the disturbance rejection
measures, where the bounds can be evaluated also
at non-zero frequencies. In order to increase the
accuracy of the bounds, the size of the correspond-
ing optimization problems has to increase. The
approach chosen here is therefore an extension to
the approach of Kookos and Perkins (Kookos and
Perkins, 2003), since the required computational
time with their approach is expected to scale more
favorably with problem size. The proposed formu-
lation is presented in detail for the minimum out-
put error problem, and the modifications needed
for the two other problems are explained briefly.

We assume that manipulated variables, distur-
bances and outputs are related through a linear
transfer function model

y(s) = G(s)u(s) + Gd(s)d(s) (1)

and assume that the model has been scaled such
that manipulated variables and disturbances are
less than one in magnitude at all frequencies ω
(where s = jω), whereas controlled variables are
scaled such that the maximum acceptable control
error is of magnitude one.

2. THE MINIMUM OUTPUT ERROR
PROBLEM

Question 1 in the Introduction is essentially a
statement of the minimum output error problem.
Stated in mathematical terms, this becomes

max
‖d‖∞≤1

min
‖u‖∞≤1

‖y‖∞ (2)

subject to fulfilling the model equation (1). The
main problem which has prevented the use of
previously published solution approaches from at
non-zero frequencies, is the fact that the infinity
norm of a vector depends non-linearly on the real
and imaginary components of a vector element.

2.1 Linear approximations to the infinity norm

The infinity norm of a vector is simply the mag-
nitude of the largest vector element. The infinity

norm is therefore convenient for expressing con-
straints on disturbances, manipulated variables,
and controlled outputs. It is well known that the
magnitude of a vector element wk is

|wk| =
√

w∗
kwk =

√

(wR
k )2 + (wI

k)2

where superscripts R and I denote the real and
complex components, respectively, of vector ele-
ment wk. Thus, the magnitude, and hence also
the infinity norm, depends non-linearly on the
magnitude of the real and complex components of
the vector elements. In the following, two approx-
imation to constraints in the infinity norm will be
used, which are formulated as linear constraints on
the real and imaginary components of the vector
elements. One approximation will allow vectors
of slightly too large infinity norm than the exact
constraint, whereas the other approximation will
disallow some vectors of acceptable infinity norm.
For a vector w to have ‖w‖∞ ≤ r, the real and
imaginary components of all vector elements must
lie on a disc of radius r in the complex plane. This
disc of radius r is approximated using n linear con-
straints. For simplicity, we assume n = 2k, k ≥ 2,
and select n uniformly distributed points along
the perimeter of the disk. Thus, the coordinates
for point i will be

(ai, bi) = (r cos vi, r sin vi) (3)

where vi = 2πi
n

. For convenience, the point (r, 0)
may be given either index 0 or index n in the
sequel. The disc of radius r may be approximated
by a polygon described by the tangent lines to the
disc at all points (ai, bi). A vector which has one
or more elements on polygon edges will clearly
have an infinity norm no smaller than r, i.e.,
this polygon allows some vectors of infinity norm
larger than r.

Alternatively, a polygon may be constructed from
straight lines passing through adjacent points on
the disc. A vector which has one or more elements
on the edges of this polygon will have an infinity
norm no larger than r, and thus this polygon will
exclude some vectors of acceptable infinity norm.
This idea is illustrated in Fig. 1 for the case when
n = 8. The polygon described by the solid lines
allows some vectors of infinity norm larger than
r, whereas the polygon resulting from the dashed
lines excludes some vectors of acceptable infinity
norm. The dashed line passing through points i
and i − 1 on the edge of the disc in Fig. 1 is
described by

(ai − ai−1)w
I
i =

(bi − bi−1)w
R
i + (aibi−1 − biai−1) (4)

The polygon is described in terms of inequalities
simply by substituting ≤ for the equality sign in
(4) for 0 < i ≤ 2k−1, and substituting ≥ for
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Fig. 1. Approximating the disc of radius r by
polygons.

2k−1 < i ≤ 2k. Thus, for each vector element
we get n constraints relating the real and imagi-
nary components of each element. The coefficients
describing these constraints may be collected in
column vectors CI , CR, and C0, whose dimension
and element values will depend on the number of
points n along the circle of radius r. Normalizing
both sides of Eq. (4) by dividing with r all terms
become independent of r except term (aibi−1 −
biai−1)/r which depends linearly on r. For a m-
dimensional column vector w, split into a real
part wR and imaginary part wI , the constraint
that ‖w‖∞ ≤ r is therefore conservatively be
approximated by the set of constraints

Im ⊗ CIwI + Im ⊗ CRwR − 1m ⊗ C0r ≤ 0 (5)

where ⊗ denotes the Kronecker product, Im is
the m by m identity matrix, and 1m is an m-
dimensional column vector of ones. Note that
the linear dependency on r has explicitly been
factored out of the vector C0, since the value of
r will typically be one of the free variables in our
optimization problems.

A solid line in Fig. 1 tangent to the disc of radius
r at point i is described by

sin viw
I
i + cos viw

R
i − r = 0 (6)

A non-conservative approximation to the con-
straint ‖w‖∞ ≤ r can therefore be expressed as

Im ⊗ N IwI + Im ⊗ NRwR − 1m ⊗ N0r ≤ 0 (7)

where the elements of N I , NR and N0 follow from
Eq. (6). The accuracy of the non-conservative and
conservative approximations to the constraint in

Table 1. Areas covered by the approxi-
mations to a disc of unit radius.

Number of points 8 16 32 64

Conservative 2.828 3.061 3.107 3.137
Exact π π π π

Non-conservative 3.314 3.183 3.152 3.144

the infinity norm can be obtained by studying
the areas covered by the corresponding polygons
compared to the circle that would represent the
exact infinity norm constraint. This is shown in
Table 1. It can be seen that even with eight
points, giving eight linear constraints per vector
element, the approximations can be useful in
many applications.

Clearly, using the conservative approximation for
‖u‖∞ and ‖y‖∞, and the non-conservative ap-
proximation for ‖d‖∞ in Eq. 2, will give an up-
per bound on the true solution. Conversely, us-
ing the non-conservative approximation for ‖u‖∞
and ‖y‖∞, and the conservative approximation
for ‖d‖∞ will give a lower bound. This paper
will describe the calculation the upper bound,
calculation of the lower bound follows by trivial
modifications.

2.2 The inner minimization problem

This subsection will describe the re-formulation
of the inner minimization problem in Eq.2, using
the conservative approximation to both ‖u‖∞ and
‖y‖∞. The notation C̃I

ny
= Iny

⊗ CI , C̃I
nu

=

Inu
⊗ CI , etc., is used, where ny and nu are

the dimensions of the output and manipulated
variable vectors, respectively. The vectors u, y,
and d are decomposed into real and imaginary
components, denoted by superscripts R and I,
and the transfer functions G and Gd are similarly
decomposed. We thus get

min
‖u‖∞

‖y‖∞ s.t. y = Gu + Gdd (8)

≈ min
uR,uI ,ry

ry (9)

s.t. C̃I
ny

{

[

GI GR
]

[

uR

uI

]

+
[

GI
d GR

d

]

[

dR

dI

]}

+ C̃R
ny

{

[

GR − GI
]

[

uR

uI

]

+
[

GR
d − GI

d

]

[

dR

dI

]}

− C̃0

ny
ry ≤ 0

[

C̃R
nu

C̃I
nu

]

[

uR

uI

]

− C̃0

nu
· 1 ≤ 0

In order to achieve a more compact notation, we
define

C̃Ru
ny

= C̃R
ny

[

GR − GI
]

(10)

C̃Rd
ny

= C̃R
ny

[

GR
d − GI

d

]

(11)

C̃Iu
ny

= C̃I
ny

[

GI GR
]

(12)

C̃Id
ny

= C̃I
ny

[

GI
d GR

d

]

(13)

ũ =

[

uR

uI

]

; d̃ =

[

dR

dI

]

(14)



The Lagrangian function of the approximation to
the inner minimization problem in Eq. (8) is then

L = ry + λT
{(

C̃Ru
ny

+ C̃Iu
ny

)

ũ (15)

+
(

C̃Rd
ny

+ C̃Id
ny

)

d̃ − C̃0

ny
ry

}

+ νT
{[

C̃R
nu

C̃I
nu

]

ũ − C̃0

nu
· 1

}

where λ and ν are non-negative Lagrange multi-
pliers. The KKT optimality conditions for Eq. (9)
are then (Luenberger, 1984)

∂L

∂ry

= 1 −
(

C̃0

ny

)T

λ = 0 (16)

∂L

∂ũ
=

(

C̃Ru
ny

+ C̃Iu
ny

)T

λ +
[

C̃Ru
nu

C̃Iu
nu

]T

ν = 0 (17)

λ×
{(

C̃Ru
ny

+ C̃Iu
ny

)

ũ

+
(

C̃Rd
ny

+ C̃Id
ny

)

d̃ − C̃0

ny
ry

}

= 0 (18)

ν ×
{[

C̃R
nu

C̃I
nu

]

ũ − C̃0

nu
· 1

}

= 0 (19)

where the symbol × denotes element-by element
multiplication. The complementarity conditions,
Eqs. (18,19) complicate the solution of the prob-
lem since they destroy the linearity and con-
vexity of the problem. Following (Kookos and
Perkins, 2003), we will use the method proposed
by (Fortuny-Amat and B., 1981) to transform the
KKT conditions to a mixed-integer linear prob-
lem. For illustration, consider the condition

γx = 0 (20)

Introduce the integer variable Γ, defined such that
Γ = 1 if x = 0, and Γ = 0 otherwise. Then the
condition in Eq. (20) is replaced by

−(1 − Γ)Bm ≤ x ≤ (1 − Γ)Bm (21)

γ ≤ ΓBm

where Bm is a sufficiently large number. When
Γ = 1 then x = 0, while when Γ = 0 then γ = 0,
and as a result the condition in Eq. (20) is always
satisfied.

It has been found that when the same points
along the unit disc are used to define the linear
constraints approximating the infinity-norm con-
straints for outputs and manipulated variables,
the inner minimization problem becomes non-
unique, leading to numerical problems in the so-
lution. Such problems are removed by using dif-
ferent points along the unit disc used to define
the linear constraints for outputs and manipulated
variables.

2.3 An approximate solution to the minimum
output error problem

Transforming the KKT conditions in Eqs. (16 -
19) for the inner minimization problem using bi-
nary variables, we can formulate the approximate
solution for the overall problem. In the following,
capital Greek letters denote binary variables. In
the description for the inner minimization prob-
lem above, we have used the conservative approx-
imation to the infinity norm for u and y. A non-
conservative approximation for ‖d‖∞ is therefore
used, in order to calculate an upper bound to
the minimum output error. Clearly, using a non-
conservative approximation for ‖u‖∞ and ‖y‖∞,
and a conservative approximation for ‖d‖∞, would
result in a lower bound on the minimum output
error.

max
d̃

ry (22)

s.t.
[

ÑR
nd

Ñ I
nd

]

d̃ − Ñ0

nd
≤ 0

(

C̃0

ny

)T

λ = 1

(

C̃Ru
ny

+ C̃Iu
ny

)T

λ +
[

C̃Ru
nu

C̃Iu
nu

]T

ν = 0
(

C̃Ru
ny

+ C̃Iu
ny

)

ũ +
(

C̃Rd
ny

+ C̃Id
ny

)

d̃ − C̃0

ny
ry ≤ 0

−
(

C̃Ru
ny

+ C̃Iu
ny

)

ũ −
(

C̃Rd
ny

+ C̃Id
ny

)

d̃

+ C̃0

ny
ry ≤ (1 − Θ)Bm

λ ≤ ΘBm
[

C̃R
nu

C̃I
nu

]

ũ − C̃0

nu
· 1 ≤ 0

−
[

C̃R
nu

C̃I
nu

]

ũ + C̃0

nu
· 1 ≤ (1 − Φ)Bm

ν ≤ ΦBm; λ ≥ 0; ν ≥ 0

Θ ∈ {0, 1}ny·n; Φ ∈ {0, 1}nu·n

3. OTHER DISTURBANCE REJECTION
MEASURES

In this section, we will briefly explain how to
formulate optimization problems which allow ob-
taining quantitative answers to Questions (2) and
(3) in the Introduction.

3.1 The required input magnitude

The required input magnitude problem is stated
in Question (2) in the Introduction, and is formu-
lated mathematically as

max
‖d‖∞≤1

min
‖y‖∞≤1

‖u‖∞ (23)

It is straight forward to reformulate this using lin-
ear constraints to approximate the infinity norms,
in the same way as for the minimum output error



Table 2. Variables in the FCC example

y Measurements

y1 Riser outlet temperature

y2 Regenerator cyclone temperature

y3 Regenerator dense bed temperature

d Disturbances

d1 Feed temperature
d2 Air temperature
d3 Feed flowrate

u Manipulated variables

u1 Air flowrate
u2 Catalyst circulation rate

u3 Feed composition

problem above. Note however that if G(jω) does
not have full row rank, the inner minimization
problem (minimizing ‖u‖∞ for a fixed d) need not
have any feasible solution. The reader is referred
to the discussion in Hovd et al. (2003) for a more
detailed discussion.

3.2 Acceptable disturbance magnitude

The acceptable disturbance magnitude problem
corresponds to Question (3) in the Introduction.
This is stated mathematically as

max ‖d‖∞ s.t. ε(d) = 0 (24)

where ε(d) is defined as

ε(d) = max
d

min
u

µ

‖y‖∞ ≤ 1 + µ

‖u‖∞ ≤ 1 + µ (25)

This problem can be reformulated using the KKT
optimality conditions, see (Kookos and Perkins,
2003) for more details. Approximating the infin-
ity norms with linear constraints then results in
a problem similar to the minimum output er-
ror problem. Alternatively, the acceptable distur-
bance magnitude problem may be solved by iter-
atively scaling the disturbance magnitude in the
minimum output error problem until a minimum
output error of 1 is obtained.

4. EXAMPLE

Here a Fluid Catalytic Cracker (FCC) described
in (Wolff et al., 1992) is considered. The FCC
has three controlled variables, three manipulated
variables, and three disturbances. The variables
considered are described in Table 2 2 . The scaled
linearized model used for this example can be
found in (Wolff, 1994). The minimum output error
at steady state has previously been found to be
zero (Hovd and Braatz, 2000; Kookos and Perkins,

2 Actually, u3 is the rate constant for coke formation for

the feed, which is a direct function of feed composition.

Table 3. Bounds for the minimum out-
put error for the example at ω = 0.1

rad/s.

Number of points 16 24 32

Conservative approx. 0.3033 0.2237 0.1963
CPU time (s) 57 502 2028

Non-conservative approx. 0.1611 0.1613 0.1614

CPU time (s) 166 1180 1015

2003). Calculating upper and lower bounds for
the frequency-dependent minimum output error
we get the results in 2. These results are obtained
using 16 linear constraints to approximate the
infinity-norm constraints for disturbances, out-
puts and manipulated variables. This case study
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Fig. 2. The minimum output error for the FCC
example.

was solved on an Intel P4 2.66 GHz/512Mb com-
puter using the GAMS interface to CPLEX MILP
solver (Brooke et al., 1998).From 2 it is clear that
the steady state minimum output error is too op-
timistic, since the peak value over all frequencies
for the lower bound of the minimum output error
is above 0.45 (compared to 0.0 at steady state).
Nevertheless, the results are consistent with the
previous steady state result, since the lower bound
for the minimum output error is found to be 0.0
at low frequencies.

Table 3 illustrates how the accuracy of the approx-
imations depend on the number of points along
the radius-r disc used to approximate the infinity-
norm constraints ‖ · ‖∞ ≤ r. It is clear, as ex-
pected, that the difference between the upper and
lower bound is reduced by using more points (i.e.,
more linear constraints) in the approximation. For
this particular example, it turns out that it is the
upper bound that is more sensitive to the number
of points used.

5. DISCUSSION AND CONCLUSIONS

This paper shows how to calculate upper and
lower bounds for the disturbance rejection mea-
sures proposed by Skogestad and Wolff (1992) for



non-zero frequencies. The example illustrates that
using the steady-state values only for the distur-
bance rejection measures may be misleading.

Upper and lower bounds for the disturbance re-
jection measures are obtained, instead of their
exact values. This is because linear constraints
are used to approximate the original infinity-
norm constraints for disturbances, outputs and
manipulated variables. Increasing the number of
linear constraints used in these approximations
gives more accurate bounds, at the cost of having
to solve a larger and more complex optimization
problem. The resulting optimization problems are
of the MILP type, and the increase in computa-
tional complexity with increased number of linear
constraints results from an increase in the number
of integer-valued variables.

In principle, the problem sizes that can be solved
using the methods described in this paper is only
limited by available computational power. How-
ever, the GAMS implementation of the algorithm
proposed in this paper, when applied to the FCC
case study, was used excessive computational time
(more than an hour) when more than 32 points
were used in approximating the infinity norm. A
huge number of alternative integer solutions need
to be explored in this case (more than 2192 ≈ 6.3 ·
1057) and a refinement of the proposed formu-
lation is needed in order to extend its applica-
bility to large scale problems. Nevertheless, the
exact value of the objective function is seldom
important since the upper and lower bounds are
enough to help the control engineer to judge the
closed loop sensitivity to disturbances. Using 8
or 16 points is often enough to achieve this goal
and at the same time generating a MILP problem
that can be solved in a few minutes even for
large problems. Future work will aim at reducing
the computational load, although many problems
of industrial relevance can be studied with the
present implementation.
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