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Abstract: This paper deals with a post-synthesis problem : how can a nominal
controller be adjusted, in order to correct the assignment of some closed-loop
poles ? A parametric sensitivity tool, called the PRABI, is here proposed to
mathematically solve this controller adjustment problem. It finds the most relevant
combination of controller gains, which masters a defined modal variation. This
solution is more simple if the nominal controller has a readable structure, like an
observer-based structure. All these theoretical results are applied successfully to
the adjustment of flight control laws of a flexible aircraft.Copyright c© 2005 IFAC
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1. INTRODUCTION

The modern control synthesis techniques are able
to take several kinds of specifications into ac-
count (modal, frequency characteristics, paramet-
ric robustness). But they often lead to high order
controllers, so that implementation problems can
arise in industrial applications.

That is the reason why the engineers prefer re-
ducing the order of the final controller. Some
methods consists in building a controller from
a reduced synthesis model (also called ”on-

board model”, when this model is implemented
in an observer-based controller). Other methods
propose to reduce the controller order after the
synthesis phase (e.g. a balanced reduction, see
(Moore, 1981)). One can notice that, in this last
case, an on-board model can be built a posteriori,
cf. (Alazard and Apkarian, 1999). Thus, one can
easily obtain a controller with order much lower
than the full order model (”validation model”),

but such a controller does not ever respect exactly
the synthesis objectives, when applied to the val-
idation model.

Today, at this stage, engineers can only per-
form last-minute adjustments based on physical
considerations and would be interested in auto-
matic tools to adjust the controller to any evo-
lution of the model and/or specifications. This
post-synthesis phase depends on the adjustment
specification and on the controller structure.

The purpose followed in this article is not to
replace the reduction phase, but to adjust some
controller parameters in order to meet a specified
assignment of the closed-loop poles (it could be no
more correct because of the reduction). The ad-
justment method is required to directly consider
the validation model associated with its reduced
controller. As this paper focuses on post-synthesis
modal corrections, an observer-based structure
of the controller is here suggested (the way to



compute a given controller into an observer-
based one is explained in (Alazard and Apkar-
ian, 1999).). Unfortunately this structure can not
observe all modes of the validation model, because
of difference of order. The maximum number of
observed poles is equal to the controller order
augmented with the number of outputs (Luen-

berger structure). Then the separation principle
is no more verified between controller dynamics
and system dynamics. Therefore the pole assign-
ment by state feedback is no more exact ((Cumer
et al., 2004)). And the classical results of modal
theory can not be here applied. That is the reason
why a theoretical tool measuring the paramet-
ric sensitivity is proposed to be used for these
closed-loop modal corrections. This parametric
sensitivity analysis tool, called the PRABI 1 , was
already exploited for robust analysis ((Gauvrit
and Manceaux, 1997) (Cumer, 2000)) and is here
extended to a kind of controller adjustment.

In the first part of this paper, the major prin-
ciples of the PRABI tool are presented and the
mathematical expressions are interpreted. It also
explains how the PRABI tool is adapted to per-
form controller adjustment. But the PRABI needs
a special layout of the problem, which is ob-
tained in the second part. It specifies also the
interest on observer-based structure for controller
adjustment. And finally a particular application -
namely, the adjustment of flight control laws of
a flexible aircraft- proves the efficiency of this
new method. Indeed, (Cumer et al., 2004) pro-
posed to tune some controller gains, extracted
from an observer-based architecture and physical
considerations. In this paper, the method based
on PRABI tool allows these adjustments to be
improved analytically.

2. THE PRABI TOOL PRINCIPLE AND ITS
EXTENSION TO THE CONTROLLER

ADJUSTMENT

The PRABI exploits the final results that one
would obtain at the end of a Bayesian identi-
fication of uncertain parameters. The subjacent
idea is : the more identifiable a parameter is, the
more sensitive the system is to this parameter
((Lavigne, 1994)).

2.1 Bayesian identification

Consider the system (S) :

(S)







ẋ = A(θ)x + w
y = Cx + v

yk = y(k∆t)
(1)

1 “Parameter Robust Analysis by Bayesian Identification”

where v and w are independent gaussian centered
white noises with the following stochastic proper-
ties 2 :

E[w(t)w(τ)T ] = Qδ(t − τ)
E[v(t)v(τ)T ] = Rδ(t − τ).

Q and R are the covariances of state noises
and measure noises respectively. yk represents the
sampled output (and, as explained below, used
for the fictitious parametric identification). ∆t
denotes the sampling period.

This system is characterized by some uncertain
parameters, which are considered as random vari-
ables. These variables are gathered together into
a vector θ. With the assumption that only the
matrix A varies (A = A(θ)) 3 , the following result
has already been demonstrated in (Gauvrit, 1982)
(Lavigne, 1994) :

p(θ0 + ∆θ/yk) = Λ exp
[

−Trace(M−1

0
∆M)

]

(2)

where

• yk represents the set of sampled outputs from
y0 to yk,

• p(θ0 + ∆θ/yk) is the probability that θ is
equal to θ0 + ∆θ (yk known),

• Λ is a constant,
• M0 = E[(yk − ŷk/k−1)(yk − ŷk/k−1)

T ] where
ŷk/k−1 is obtained by the Kalman filter used
for the estimation of (S) and tuned at θ0,

• ∆M is such that M0 + ∆M = E[(yk −
ŷk/k−1)(yk − ŷk/k−1)

T ], where ŷk/k−1 is now
obtained by an another Kalman filter, used
for the estimation of (S) too, but tuned at
θ0 + ∆θ (untuned filter).

In (Gauvrit, 1982; Lavigne, 1994), it is also proved
that

Trace(M−1

0
∆M) = ∆θT G−1

θ0
∆θ.

Consequently the probability p(θ0 + ∆θ/yk) is a
gaussian law according to the direction ∆θ. Gθ0 is
the covariance matrix of the θ identification error
around θ0.

2.2 Interpretation and use of G−1

θ0
to correct a

pole assignment

The equation (2) expresses the identification
sharpness of the vector θ0 into the direction ∆θ.

Since G−1

θ0
is the inverse of covariance matrix for

the gaussian law p(θ0 + ∆θ/yk), its normalized
singular vector ∆θm associated with its minor
singular value λm represents the direction ∆θ of
minimal sensitivity -i.e. this direction is the set of

2 E[x] denotes the expected value of random variable x.
δ(t) is the Dirac function.
3 It is also possible to consider variations in C.



parametric variations to which the system is the
least sensitive. Indeed, the following mathematical
expressions :

• G−1

θ0
∆θm = λm∆θm,

• and p(θ0 + α∆θm/yk) = Λexp(−λmα2),

lead to a gaussian law with a maximal standard
deviation. In other words, this parametric direc-
tion is the least identifiable (see Figure 1 (b)).
Reciprocally the normalized singular vector ∆θM

associated with the major singular value λM of
G−1

θ0
is the direction ∆θ of maximal sensitivity.

The identification of θ variations is good in this
direction (see Figure 1 (a)).

It is also necessary to precise that this result is
only local around θ0.

(a) (b)

p(θ = θ0 + α∆θM |yk)

θ0 + α∆θmθ0 + α∆θMθ0 θ0

p(θ = θ0|y
k)p(θ = θ0|y

k)

p(θ|yk)p(θ|yk)

p(θ = θ0 + α∆θm|y
k)

αα

Fig. 1. Different qualities of bayesian identification
- a) along the maximal sensitivity direction,
b) along the minimal sensitivity direction.

Consider now the controller adjustment problem
for modal requirements. Suppose that a paramet-
ric vector ∆θ = vec(δp, δK) can be highlighted,
such that δp is the desired variation of a modal
characteristic (i.e. of dimension 1) and δK groups
the controller gains to be adjusted. In this case,
the direction ∆θ of minimal sensitivity, found by
the PRABI, gives the ∆K value which counters
a δp quantity. But this controller variation can
imply a displacement of all closed-loop modes.

Then, δp must take all possible variations (pul-
sation and ratio damping) of all system modes
into account, and the search for the direction
of minimal sensitivity must be able to fix some
modal variations at 0 (adjustment constraints).

Mathematically, the aim is to find a direction ∆θ
that minimizes ∆θT G−1

θ0
∆θ under some modal

constraints. The controller adjustment will be
perfect, if ∆θT G−1

θ0
∆θ is equal to 0 and if the

constraints are verified.

3. CONTROLLER ADJUSTMENT
ALGORITHM BASED ON THE PRABI

3.1 Extraction of the fundamental controller
parameters in a observer-based architecture

As explained in the introduction, once an on-
board model is computed, the reduced controller

is easily structured into an observer-based archi-
tecture, basically composed of a state estimator, a
state feedback and a dynamic Youla parameter
(as shown on figure 2) 4 .
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Fig. 2. Observer-based structure of a reduced
controller.

When the plant order allows a full estimation
of the states (dimensions of x and x̂ are equal),
a standard eigenvalue assignment can be per-
formed for a modification a posteriori of the
closed-loop dynamics. However, if the plant or-
der is not low enough, this assignment is no
more possible. Indeed, the state-space dynamics
(spec(A0 −B0Kc)), the state estimator dynamics
(spec(A0 − KfC0)), and the Youla parameter
dynamics (spec(Q(s)) are not separated and do
not correspond to the closed-loop dynamics.

The adjustment procedure aims to find the best
combination of some gains extracted from this
control law structure, which meets the pole assign-
ment requirement. It is clear that the elements of
the matrices Kc and Kf are the most important
gains of this structure for pole assignment. Given
the dimension of these matrices, only the Kc gains
will be here considered, because they control the
modes resulting from the plant 5 .

The figure 3 illustrates how controller gains, to
be tuned, can be extracted from Kc. Matrices Mk

and Nk are introduced, so that the state feedback
matrix is: Kc+Mkdiag(δK)Nk. Thus presented,

the adjustment procedure will finally give

a particular value of the vector δK.

3.2 Description of the modal parameters to be
modified

For a modification of a modal characteristic δp
(for example, a variation of a flexible mode damp-

4 One can point out that there are several solutions

according to the distribution of the closed-loop eigenvalues
between the dynamics (spec(A0 − KfC0)), (spec(A0 −

B0Kc)) and (spec(Q(s))). Some remarks in (Alazard and
Apkarian, 1999) can help to make this choice.
5 With the aim of generality, the notation K is used in
the next paragraphs and can refer to the gains of Kc or of
both Kc and Kf .
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Fig. 3. Extraction of Kc gains.

ing ratio), a relevant combination of controller
gains is a value along a direction of δK which
could balance a value of the selected variation δp
of a closed-loop pole. In other terms the adjusted
controller puts the considered pole in the opposite
direction induced by the fictitious variation δp.
Note that δp is called “ fictitious closed-loop vari-
ation”, because it only appears in the closed-loop
system for the computation of the best direction
of δK.

To act on a closed-loop mode, the system pre-
sented on figure 3 needs to be written in a state-
space realization. This realization (Acl, Bcl, Ccl)
has the same order than the closed-loop system in
figure 2, but the number of inputs and outputs is
increased by the size of the vector δK. For reasons
of clarity, the matrix Dcl is omitted.

Figure 4 shows a way to modify Acl. The vec-
tor ∆θ, composed of the perturbations δp and
δK, acts on the closed-loop system via a static
feedback. One can remark that this system could
be presented as a M − ∆ standard form with a
structured perturbation ∆ = ∆θ = diag(δp, δK).
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Fig. 4. Full ∆θ perturbation feedback.

Subsequently the PRABI will help to find the
best controller gains adjustment which counters
the artificial closed-loop variation.

3.3 Definition of the system (S) in (1)

The matrix G−1

θ0
is highly dependent on the noise

covariances Q, R, and on the observation matrix
C. The choice of these parameters influences the
adjustment results. Since this identification is a
fictitious one, it is possible to choose a different

matrix Cfic only for the identification procedure
(figure 5).
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Fig. 5. Use of a fictitious output matrix Cfic for
G−1

θ0
computation.

For example, consider a closed-loop system com-
posed only of a pair of complex conjugated
modes :

A =

[

0 1
−ω2 −2ξω

]

(3)

and the vector ∆θ = [δω δξ]T (here, the con-
troller gains are not included in θ). A random
choice for Q and R leads to a positive symmetric
definite matrix G−1

θ0
:

G−1

θ0
=

[

a b
b c

]

.

With such a G−1

θ0
, the minimum of ∆θT G−1

θ0
∆θ is

achieved for δξ = − b
c when δω is fixed to 1 (for

example). If b is different from 0, it means that,
from a PRABI point of view, a displacement of
δω can be compensated by a variation of δξ.

Of course this possible compensation is not inter-
esting for modifying the assignment of closed-loop
poles. In this modal context, it is more judicious to
have a decoupling between pulsation and damping
ratio corrections. Thus, Q and R (and possibly
Cfic too) will be chosen to ensure the nullity of b.
A simple optimization procedure gives such Q, R
and Cfic.

In a more general case, when the order of the
closed-loop system is higher than 2, the matrix
Acl is first reordered into a block diagonal repre-
sentation (blocks are similar to A in equation (3))
and the optimization step is performed for each
block independently. The final Q, R and Cfic are
the concatenation of the successive results ; i.e.
they are block diagonal matrices.

Then G−1

θ0
can be decomposed as follows :

G−1

θ0
=

[

G11 G12

GT
12

G22

]

(where the sub-matrix G11 is diagonal)
so that, for ∆θ = [δp δK]T ,

∆θT G−1

θ0
∆θ = δpT G11δp + 2δpT G12δK + δKT G22δK (4)



3.4 Numerical solution of controller adjustment

Under these conditions the minimum of (4), when
δK is fixed, is characterized by δp = −G−1

11
G12δK

(similarly, when δp is fixed, δK = −G−1

22
GT

12
δp

gives the optimum).

In order to weight the shifting of all poles, the
criterion used is the following :

Crit = (δp∗ − δpd)T P (δp∗ − δpd) (5)

• δpd is the desired vector of the closed-loop
system parameters,

• δp∗ is the optimal vector of the closed-loop
system parameters, when δK is fixed in (4) :
i.e. δp∗ = −G−1

11
G12δK,

• P is a diagonal weighting matrix, which gives
different priorities between the closed-loop
poles (or closed-loop system parameters).

The objective is to find δK which minimizes (5).
The solution of this problem is given by :

GT
12G

−1

11
PG−1

11
G12δK = GT

12G
−1

11
Pδpd (6)

In some cases (depending on GT
12G

−1

11
PG−1

11
G12

rank), several solutions are possible. The choice of
one of these solutions is then led by a secondary
criterion (for example, the minimization of the δK
norm).

3.5 Controller adjustment algorithm

Finally, for the controller adjustment problem,
examined in this paper, three kinds of parameters
need to be defined : the most relevant controller
gains to be tuned (the adjustment result is a
rectification of a combination of these gains), the
closed-loop modal characteristics to be modified
(characterizing the adjustment objective) and the
PRABI parameters (guaranteeing the accuracy of
the adjustment).

The controller adjustment algorithm is then com-
posed of five steps :

(1) Group the gains of the (observer-based) con-
troller you choose to tune into the vector K.
The vector ∆K denotes their variations.

(2) Obtain a state-space realization of the vary-
ing closed-loop system and take into account
the modal objectives of the post-synthesis
adjustment. Obtain a standard M −∆ form,
as illustrated on figure 4.

(3) Initialize the PRABI parameters, so that the
submatrix G11 is diagonal.

(4) Then compute the matrix G−1

θ0

(5) With an optimization procedure, find the
best value of δK (i.e. the best value of a
controller gains combination), which must be
applied in order to modify the closed-loop
modal characteristics (see equation (6)).

4. APPLICATION TO FLIGHT CONTROL
OF A FLEXIBLE AIRCRAFT

The model used here is a linearized 60th order
model of the lateral motion of a flexible aircraft
around an equilibrium point. The state vector x
contains :

• 4 rigid states (yaw angle β, roll rate p, yaw
rate r, roll angle φ),

• 36 states that represent the 18 flexible modes
modelled between 8 and 80 rd/s,

• 20 secondary states that represent dynamics
of servo-control surfaces and aerodynamics
lags.

The system is composed of 4 inputs and 6 outputs.
The nominal controller for this system is described
by a 20th order state space representation (with 6
inputs and 4 outputs).

As effects of the control law, the spiral mode is
moved far in the half left plane as the Dutch
roll mode. The damping ratios of most of flex-
ible modes increase. But the Dutch roll mode
damping ratio is too weak and must be increased
(closed-loop poles, obtained with the nominal con-
troller, are represented by “o” on figures 6 and
7). Thus, different modal modifications can be de-
fined. Observer-based controllers will be used (for
reasons evoked above) and the efficiency of the
controller adjustment method based on PRABI
will be verified.

Modification (a posteriori) of the Dutch roll damp-
ing ratio. In this case, an observer-based con-
troller (26 states estimated with a Luenberger

estimator) is conceived from an on-board model
described by the 4 rigid modes and 22 states repre-
senting 11 flexible modes. Only the state feedback
Kc is chosen to be modified (a better result could
be found in considering gains of both Kc and
Kf ). The effects of the variation of Kc around its
nominal value (applied on the validation model)
are shown in figure 6.

The different weightings, grouped into the matrix
P (see equation (5)), which lead to this combina-
tion of controller gains are : 1 for the Dutch roll
pulsation, 1 for the Dutch roll damping ratio, 1
for the pulsation of the first flexible mode, 1 for
the damping ratio of the first flexible mode, and
0.1 for all other closed-loop parameters (damping
ratios and pulsations).

The controller adjustment direction, obtained by
the PRABI method, makes it possible to move
the Dutch roll mode along an iso-pulsation curve.
The other plant poles are not sensitive to this
direction of controller adjustment. As Kf is not
taken into account, some controller modes are
sensitive to this direction (the choice of weightings
also influences the result). The final adjustment
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Fig. 6. Pole evolution around the nominal assign-
ment (marked by the “o”) due to a scalar
variation of the controller gains combination,
computed to correct the Dutch mode damp-
ing ratio.

corresponds to a chosen position of the poles,
marked by ’+’. The major modification concerns
the damping ratio of the Dutch roll.

Correction of the damping ratio of the first flexible
mode. The adjustment objective is the improve-
ment of the damping ratio of the first flexible
mode. The conception of the observer-based con-
troller and the choice of the weightings are the
same as in the precedent case. Figure 7 shows the
effects of the extracted controller gains combina-
tion on the validation model. The pole placement
marked by ’+’ is the final choice for this adjust-
ment.

5. CONCLUSION

In this paper a controller adjustment method is
presented to correct the initial closed-loop pole as-
signment and successfully applied to a high order
flexible aircraft model. This adjustment tool has
the significant advantage to include directly the
validation model into the synthesis of controller
gains combination to be tuned. At present, ex-
tensions of this promising method are studied in
order to minimize a transfer norm, not considered
in design of the first controller.
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