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Abstract: The main objective of this research is to improve the feasibility of Energy
Momentum Wheels for satellite systems through the development of robust LTI and
gain-scheduled controllers for high-speed flywheel rotors supported on active magnetic
bearings. A hybrid combination between H∞ loop-shaping and µ-synthesis is used in
this paper to design controllers. In order to reduce the computational complexity of
the control designs and the order of the synthesized controllers, a method is devised
in this paper to reduce the number of states that depend on the rotor speed. The
rotor speed is treated as uncertainty in an LTI controller design and is used as a
scheduling variable for a gain-scheduled framework. The success of the methodology
used is demonstrated through numerical simulation and experimental results.
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1. INTRODUCTION

An Energy Momentum Wheel (EMW) is a fly-
wheel that combines the functions of energy stor-
age and momentum management into a single
component. The successful application of EMWs
to satellite systems holds the promise of signifi-
cantly reducing a satellite’s mass and cost when
contrasted with traditional satellite architecture
that separates energy storage and momentum
management functions (Proctor, 1999). Magnetic
bearing technology is of crucial importance for
efficient EMWs due to advantages that include
very high operation speed, no lubrication require-
ment, no wear and low power loss. Spacecraft
specifications often require very stringent pointing
requirements as well as a vibration-free environ-
ment for onboard experiments. Imbalances and
resonant modes in EMWs can create inertia forces
which, when interacting with the stator, transmit
unwanted vibration onto the spacecraft structure.
This can be avoided with the use of active mag-

netic bearings (AMBs) coupled with an online con-
troller that rejects undesirable vibrations (Knospe
et al., 1997). The successful development of an
effective magnetic bearing controller is thus a crit-
ical technology for the use of EMWs in satellites.

Conventional control methodologies for flywheels
supported on AMBs typically assume a Linear
Time-Invariant (LTI) plant (Fujita et al., 1993).
This is a reasonable assumption if the speed of
the rotor remains relatively constant. If, on the
other hand, the speed of the rotor ranges over
a wide spectrum of operating speeds, as is the
case for EMWs, the LTI assumption is no longer
valid. This is because the system matrix of these
plants is a function of the rotor speed and the
plant dynamics change considerably with rotor
speed due to gyroscopic effects (Tsiotras and Ma-
son, 1996). Consequently, conventional control al-
gorithms which do not give due consideration to
the parameter varying nature of the plant often do
not have the desired performance when operated
on a wide range of rotor speeds.
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The greatest difficulty in designing controllers
with good robust performance margins for EMWs
operating at high rotor speeds is the highly flexible
nature of the vibrational modes. The proximity of
the poles and zeros of such plants to the imagi-
nary axis imposes fundamental limitations on the
achievable performance (Francis, 1987). This, to-
gether with the parameter-varying nature of the
plant and the very strict disturbance rejection
specifications, makes ad-hoc or trial-and-error de-
signs inadequate.

In this paper, a hybrid scheme between H∞ loop-
shaping and µ-synthesis is used to design robust
controllers. Performance requirements are spec-
ified through loop-shaping weights whereas ro-
bustness to parametric uncertainty is incorporated
through a µ-synthesis design.

2. SYSTEM DESCRIPTION

An experimental test rig was designed and con-
structed at the University of Virginia that pos-
sesses all important features of EMWs that will
be used onboard satellites (Schönhoff et al., 2000).
A schematic diagram of this test rig is shown in
Figure 1. This test rig is used to study/validate de-
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Fig. 1. Schematic diagram for an EMW test rig

signed controllers. The test rig was designed in an
overhanging configuration, as shown in Figure 1.
The thrust magnetic bearing, which supports the
rotor vertically, is located at the top. Two sets of
radial magnetic bearings are located in the middle
of the rotor shaft, with one set labeled as higher
bearing and the other set labeled as lower bearing.
An additional set of mechanical bearings, located

next to the radial magnetic bearings, are used
as backup bearings. Eddy-current displacement
probes are used to pick up the displacement signals
of the rotor. The design also completely integrates
the motor with the rotor shaft. A gyroscopic disk,
simulating the gyroscopic effects of a flywheel, is
located at the bottom.

Besides all the mechanical parts just described, the
system also consists of amplifiers for the actuators,
sensors and anti-alias filters for digital control.
Furthermore, interaction of this system with the
surrounding structure is modeled by a substruc-
ture transfer function. The block diagram for the
closed-loop system is shown in Figure 2. In order to
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Fig. 2. Block diagram for the closed-loop system

have effective model-based control designs, accu-
rate mathematical models were developed for each
component in the physical system and validated
through extensive experimental testing.

2.1 Nominal Plant Model

The final reduced order model that includes all
the plant components in Figure 2 has 44 states
and can be described by:

ẋ = (Ao + ρAg)x+Bu,

y = Cx,

where ρ is the rotor spin speed, u is control
input and y is the vector of measured outputs.
The plant dynamics posses several features which
make the control problem challenging from both a
theoretical and an experimental stand-point. This
is because the plant:

(i) is unstable and non-minimum phase,
(ii) has non-negligible time-delay,
(iii) is highly flexible with several flexible modes

inside the desired closed-loop bandwidth,
(iv) is an LPV system with the rotor spin speed

ρ as parameter,
(v) has significant uncertainty on the natural

frequencies of the flexible modes.
(vi) has significant unmodeled substructure dy-

namics.

These features, together with the required strin-
gent performance specifications, demand for ad-
vanced control algorithms which are capable of



handling these difficulties in a non-conservative
and systematic way.

The gyroscopic variations which depend on ρ arise
only in the modeling of the rotor dynamics and
thus the matrix Ag is rank deficient. In fact, for the
test rig of Figure 1, the rank of Ag is 10 whereas
its dimension is 44×44. Due to this property, it is
possible to decompose Ag into Ag = BgCg where
the number of columns of Bg and the number of
rows of Cg are equal to the rank of Ag (Horn
and Johnson, 1996). Using this decomposition, the
parameter ρ may be pulled-up in an LFT setup as
shown in Figure 3, where r denotes the rank of Ag.
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Fig. 3. Nominal plant with ρ pulled-up in LFT setup

The singular values of the nominal plant plotted
against frequency at four different values of the pa-
rameter ρ are depicted in Figure 4. These singular
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Fig. 4. Singular values of plant dynamics

value plots clearly illustrate the level of flexibility
and the non-trivial variation of the plant with the
parameter ρ.

2.2 Perturbed Plant Model

In order for a controller to perform well on a
physical plant, the uncertainty characterization
around the nominal plant model must be such
that it captures the dynamics of the true plant.
The predominant source of uncertainty in EMW
systems occurs in the knowledge of the natural
frequencies of the vibrational modes. Since even
small mismatches in the natural frequencies of

vibrational modes can induce very large additive,
multiplicative or coprime factor errors, it is of
crucial importance to capture this type of uncer-
tainty directly as parametric uncertainty (Balas
and Young, 1995).

Towards this end, let A be the system matrix in
the nominal plant model. Then, A can be trans-
formed to a real modal representation Ã = TAT−1

through a similarity transformation matrix T .
Then the 2 × 2 block corresponding to the i-th
vibrational mode on the main diagonal of Ã is of
the form

Ãi =
[

0 1
− [ωi(1 + δi)]

2 −2ξi [ωi(1 + δi)]

]
,

where ξi is the modal damping of the i-th mode,
which is assumed to be well-known, and ωi is the
natural frequency of the i-th mode with relative
multiplicative uncertainty δi. Linearizing the term
[ωi(1 + δi)]

2 for small uncertainties δi gives ω2
i +

2ω2
i δi and hence Ãi can be rewritten as

Ãi =
[
0 1

−ω2
i −2ξiωi

]
+

[
0
1

]
δi

[−2ω2
i −2ξiωi

]
.

Thus, Ãi can be represented in an LFT setup with
the input and output vectors

B̃i =
[
0
1

]
and C̃i =

[−2ω2
i −2ξiωi

]

and a single real uncertainty δi. In order to
keep the numerical condition of the original plant
model, the plant model is not transformed to the
modal coordinates. Instead, the input and output
uncertainty matrices B̃ and C̃, assembled from the
vectors B̃i and C̃i, are transformed back to the
original coordinates: Cd = C̃T and Bd = T−1B̃.
The numeric conditioning of the input and out-
put uncertainty matrices is further improved by
scaling the rows and columns of Cd and Bd re-
spectively, to have equal 2-norms. The perturbed
plant model so achieved is depicted in Figure 5.
For the test rig a ±6% uncertainty on the nat-
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Fig. 5. Perturbed plant with parametric uncertainty

ural frequencies of the 20 vibrational modes was
considered adequate.



3. CONTROL PROBLEM FORMULATION

Given a nominal plant model for an EMW system
and an uncertainty characterization as illustrated
in Figure 5, the control problem is cast into an
H∞ loop-shaping design problem as depicted in
Figure 6. This is not a standard H∞ loop-shaping
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Fig. 6. Block diagram for H∞ loop-shaping framework

problem because of the parametric uncertainty
on the nominal plant P . It should be clear from
Figure 6 that setting c = 0 gives an LTI controller
(independent of the parameter ρ), whereas setting
c > 0 gives a Gain-Scheduled controller that is a
function of ρ.

Loop-shaping weights W1 and W2 are usually
designed in two stages. In the first stage, the
desired loop-shape is determined. This usually
involves translating time-response requirements
and closed-loop performance specifications into
the frequency domain. To do this, engineers largely
rely on their intuition and their past experience
with loop-shaping concepts. In the second stage,
the designer selects loop-shaping weights W1 and
W2 so that Ps has the desired loop-shape.

Since Ps is a function of ρ in the block diagram
of Figure 6, selecting loop-shaping weights that
are independent of ρ means that a ρ-independent
performance/stability level is demanded from the
closed-loop system. The loop-shaping weights se-
lected for the test rig are shown in Figure 7. For
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Fig. 7. Loop-shaping weights W1 and W2

this problem, diagonal weights were found to be
sufficient. These loop-shaping weights satisfy the
desired specifications (e.g. sensitivity and compli-
ance reduction of the order of 100 at low fre-
quency, closed-loop bandwidth around 1000 rad/s
and reduction of spill-over dynamical uncertainty
beyond 3000 rad/s).

In order to synthesize C∞, the block diagram of
Figure 6 is redrawn into an LFT configuration
as shown in Figure 8. Here, G is the general-

G

C∞




zd

zg

zc

z1

z2







wd

wg

wc

w1

w2




Normalized

∆

ρIr+c

δ1

δm

...

[
y
wc

] [
u
zc

]

Fig. 8. LFT interconnection for C∞ synthesis

ized plant and consists of all known or specified
transfer functions in the feedback interconnection,
C∞ is the controller map to be synthesized, and
diag [δ1, . . . , δm, ρIr+c,∆] is the normalized struc-
tured uncertainty block in the system. It should
be clear that if c = 0, the signals wc, zc and
the corresponding sub-blocks in C∞, G and the
uncertainty block disappear from the formulation.

Since the structured uncertainty block in Figure 8
is normalized to have size less than or equal
to unity, a necessary and sufficient condition for
robust performance of this interconnection is that

sup
ω∈R

µ∆TOT

[Fl (G(jω), C∞(jω))
]

< 1,

where ∆TOT determines the structure of the un-
certainty block. The problem of synthesizing C∞
thus reduces to a standard µ-synthesis problem
which can be solved through D-K iterations.

4. REDUCTION OF NUMBER OF PLANT
STATES DEPENDING ON ρ

Consider the problem of synthesizing C∞ using the
D-K iterative procedure for the problem depicted
in Figure 8. Note that one of the uncertainty
blocks is ρIr+c. Corresponding to this uncertainty
block, there will be a full-block D-scale which has
dimension (r+c)×(r+c). In a typical D-K iterative
procedure, the D-scales are first computed point-
wise in frequency and then the resulting frequency
data for each element is fitted by a transfer func-
tion in order to construct a rational D-scale that
can be used for controller synthesis. If (r + c) is
not a small number, this procedure may easily
result in a rational D-scale that has very high



order. Such a high order D-scale will then, in turn,
result in a high order synthesized C∞. Thus, it
is evident that the design procedure will greatly
benefit if (r + c) can be reduced in any way with
minor compromise in the modeling accuracy and
achieved performance.

Since from an engineering point-of-view c will
always be chosen to be less than or equal to r,
the problem reduces to finding the smallest value
of r for which there is only minor compromise in
the modeling accuracy of the plant. The basis of
such a reduction will rely on the ν-gap metric.

Towards this end, consider again the nominal plant
model depicted in Figure 3 and let the choices of
Bg and Cg in the decomposition of Ag = BgCg be
as follows:

Bg := U

[
Θ
0

]
and Cg :=

[
Ir 0

]
UT ,

where Ag = U

[
Θ 0
0 0

]
UT is a Real Schur Decom-

position with U satisfying UUT = UT U = I and

Θ =
r/2

diag
i=1

([
0 σi

−σi 0

])

with σ1 ≥ σ2 ≥ · · · ≥ σr/2 > 0. Note that Θ takes
this special form because Ag is skew-symmetric
(i.e. Ag = −AT

g ) for EMW systems (Merkin,
1956). Then, define a new plant model P̂q as
depicted in Figure 9. The only difference between
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Fig. 9. Reduction in number of states that depend on ρ

P̂q and the nominal plant model P depicted in
Figure 3 is the number of states that depend on
the parameter ρ. The following procedure was used
to determine the smallest value of q such that the
systems P̂q and P are close in a feedback sense:

1. Let q = r − 1.
2. Evaluate δν(W2PW1,W2P̂qW1) at every ρ in
the operating envelope.

3. If δν(W2PW1,W2P̂qW1) � bopt(W2PW1) at
each ρ, then let q = q−1 and go back to Step 2.
Otherwise EXIT.

The plots in Figure 10 are the results of this
procedure when applied to the test rig nomi-
nal plant. Since experience suggests (McFarlane
and Glover, 1992) that 0.3 is a good value for
bopt(W2PW1), it follows from Figure 10 that q = 8
is the smallest value of q such that P̂ and P are
close in a feedback sense. This implies a reduction
of 2 states (since r = 10) from the dependence on ρ
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Fig. 10. ν-gap discrepancy evaluated at every ρ

which yields considerable computational improve-
ment as there are 64 elements for the D-scale as-
sociated with ρIq when compared to 100 elements
for the D-scale associated with ρIr. Consequently,
Figures 6 and 8 are redrawn with diag

[
ρIq, 0r−q

]
replacing ρIr in the uncertainty blocks.

5. LTI CONTROLLER SYNTHESIS AND
RESULTS

An LTI controller was synthesized for the test rig
by setting c = 0 in Figures 6 and 8 using the
approach of the previous sections. This controller
has 56 states and achieves robust performance in
the face of the following specified uncertainties:

• 6% parametric uncertainty on the natural
frequency of the vibrational modes,

• 0 to 25, 000 rpm as allowed parameter varia-
tions in ρ,

• 20% unstructured uncertainty on the normal-
ized coprime factors of the shaped plant.

Figure 11 shows the singular value plots for C∞
and the controller C. It can be seen that the con-
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Fig. 11. Controller singular value plots

troller C has high gain at low frequency to achieve
the desired sensitivity and compliance reduction,
introduces some phase lead around cross-over to
improve the robust stability margins and rolls-
off rapidly after 5000 rad/s to reduce the effects
of spill-over dynamics. The complex dynamical
changes in the controller around cross-over are due
to the vibrational modes in the plant, since lightly
damped poles and zeros around cross-over can be
detrimental to stability if the controller does not
adequately compensate for them. This controller
worked well in simulation on the high-fidelity plant
model, and the experimental results were also very
comparable.



The compliance magnitude responses obtained
during experiment are given in Figure 12 and the
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Fig. 12. Magnitude plots of (I − PC)−1P

plant input disturbance rejection time responses
for a step disturbance of unit magnitude are shown
in Figure 13. The only shortcoming of this LTI ro-
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Fig. 13. Disturbance rejection time response

bust controller design is that the parameter range
of ρ stabilized by this one LTI controller is not as
wide as required for a typical EMW system.

Consequently, a gain-scheduled robust controller
may be designed by setting c > 0 in Figures 6
and 8. The structure of this controller:

ẋk = (Ako
+ ρAkg

)xk +Bky

u = Ckxk

with rank(Akg
) = c would be very similar to that

of the plant. The synthesis of this gain-scheduled
controller would be based on the assumption that
the parameter ρ varies very slowly, although it
spans a wide range of rotor spin speeds. This
assumption is true for most EMW applications
and hence justifies the approach. Furthermore,
since ρ varies so slowly and ρ̇ is not available
for measurement, existing LPV designs would give
quite conservative results.

6. CONCLUSIONS

Experience with highly flexible systems shows
that unstructured uncertainty does not capture
well perturbations on the natural frequencies of
the vibrational modes around cross-over. This is
because the proximity of these lightly damped
poles and zeros to the imaginary axis induces very
large unstructured uncertainties in a gap sense.
Consequently, a combination of parametric (struc-
tured) and unstructured uncertainty was used in
this paper to correctly model the dynamics of
a highly flexible rotating structure supported on
magnetic bearings. The rotor speed was treated
as uncertainty so as to increase the robustness of
the synthesized controller against such variations.
Experiments confirmed the good stability and per-
formance characteristics of the proposed control
design.

7. REFERENCES

Balas, G. J. and P. M. Young (1995). Control de-
sign for variations in structural natural fre-
quencies. Journal of Guidance, Control and
Dynamics 18(2), 325–332.

Francis, B. A. (1987). A course in H∞ control
theory. Vol. 88 of Lecture notes in Control
and Information Sciences. first ed.. Springer-
Verlag.

Fujita, M., K. Hatake and F. Matsumura (1993).
Loop shaping based robust control of a mag-
netic bearing. IEEE Control Systems Maga-
zine 13(4), 57–65.

Horn, R. A. and C. R. Johnson (1996). Matrix
Analysis. Cambridge University Press.

Knospe, C. R., S. M. Tamer and J. Lindlau (1997).
New results in adaptive vibration control. In:
Proceedings of MAG ’97 Industrial COnfer-
ence and Exhibition on Magnetic Bearings.
Alexandria, VA. pp. 209–219.

McFarlane, D. and K. Glover (1992). A loop
shaping design procedure using H∞ synthe-
sis. IEEE Transactions on Automatic Control
37(6), 759–769.

Merkin, D. R. (1956). Gyroscopic Systems.
Gostekhizdat. Moscow.

Proctor, P. (1999). Flywheels show promise for
‘high-pulse’ satellites. Aviation Week and
Space Technology p. 67.

Schönhoff, U., J. Luo, G. Li, E. Hilton, R. Nord-
mann and P. Allaire (2000). Implementation
results of µ-synthesis control for an energy
storage flywheel test rig. In: Proceedings of
the 7th International Symposium on Magnetic
Bearings. Zurich, Switzerland.

Tsiotras, P. and S. Mason (1996). Self-scheduled
H∞ controllers for magnetic bearings. In: In-
ternational Mechanical Engineering Congress
and Exposition. Atlanta, GA. pp. 151–158.


