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Abstract: In this paper, we present a systematic methodology for constructing LFT
representations for general mechanical systems derived via Lagrange’s equations.
The LFT representation allows for any nonlinear matrix second-order mechanical
system to be transformed into an interconnection of an LTI system with a diagonal
“uncertainty” block. This uncertainty block is, in fact, state-dependent. Sufficient
conditions that ensure well-posedness of the LFT interconnection are given. Using
such LFT representations, the stability properties of the system can then be analyzed
using Linear Matrix Inequalities (LMIs).

Keywords: Mechanical Systems, Linear Fractional Transformations.

1. INTRODUCTION

A nonlinear system of the form

ẋ = f(x, u) (1)

where f is a vector of rational polynomial func-
tions of the states x and a linear function of
u, has a Linear Fractional Representation (LFR)
(Ghaoui and Scorletti, 1995; Cockburn and Mor-
ton, 1997). In this LFR representation, the sys-
tem can be described as an interconnection of an
LTI system with a diagonal “uncertainty” matrix
containing the states. Such LFR/LFT representa-
tions are very common in robust control (Zhou
et al., 1996; Lambrechts et al., 1993; Belcastro
and Chang, 1998; Cheng and De Moor, 1994).
In (Ghaoui and Scorletti, 1995) a state-feedback
synthesis method is presented via a set of LMIs
for systems written in LFR/LFT form. Stability
conditions are then obtained by analyzing the
properties of a differential inclusion related to
an LFR. Subsequently, the problem is formulated
as a convex optimization problem and solved us-
ing standard LMI techniques (Boyd et al., 1994).

1 Partially supported by NSF (award no: CMS-9996120)
and AFOSR (award no: DAAD19-00-1-04)

Moreover, the feedback controller has a domain of
attraction, which can be estimated a posteriori.

One of the main obstructions in the previous
methodology is the absence of a systematic way
of constructing such LFT/LFR representations for
general non-linear systems having minimal dimen-
sion. Recent advances in this direction include,
for example, the work of Cockburn and Morton
(1997). Instead of insisting on general nonlinear
systems, in this paper we restrict our attention to
nonlinear mechanical systems that can be written
in second-order matrix form as follows

M(q)q̈ + C(q, q̇)q̇ +K(q)q = u (2)

where M(q) represents the mass matrix, C(q, q̇)
represents damping and Coriolis terms and K(q)
is the stiffness matrix. The previous representa-
tion – derived via the application of Lagrange’s
equations – has much more structure that the gen-
eral nonlinear system (1). For mechanical systems,
the control design may benefit from a closer look
at the structure of the equations describing the
system under consideration. In this paper we use
the special structure of Eq. (2) to construct LFT
representations. These LFT/LFR representations
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can then be used for control design. Notice that in
contrast to several other nonlinear methodologies
(Isidori, 1995; Krstić et al., 1995) this technique
does not require any nonlinear transformation of
the states that may result in a new set of system
coordinates without an obvious physical meaning.
As performance specifications are typically given
in the original coordinates, casting these specifica-
tion in the new coordinates is often a non-trivial
exercise. This is an important issue that is often
overlooked in nonlinear control design literature.

The notation of this paper is standard. For a real
matrix P , P > 0 means that P is symmetric and
positive-definite. AT is the transpose of the matrix
A, Ir denotes the identity matrix in R

r×r with
I0 = [ ], the empty matrix, 0r1×r2 denotes the
r1 × r2 zero matrix, Ln ∈ R

n×n denotes a lower-
triangular matrix with the following structure,

Ln =




0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...
...

. . .
...
...

0 0 0 . . . 1 0




where diag(A,B) denotes the corresponding block-
diagonal matrix. Υi,j

n is a n×n zero matrix except
for the element (i, j), which is 1. If A : R

n →
R

n×n is a matrix of polynomials, every entry of
A(q) is a multi-variable polynomial function of
q = (q1, q2, . . . , qn) ∈ �n. The degree of the
variable qi in A(q) is the highest exponent power
to which this variable is being raised, among all
the monomials of all the polynomial functions
in the matrix A(q). For m (monic) monomials
q

ij,1
1 q

ij,2
2 · · · qij,n

n , 1 ≤ j ≤ m of the variable vector
q = (q1, q2, . . . , qn) ∈ �n, we associate the diago-
nal matrix, Ψ = diag( Ii1,1⊗q1, Ii1,2⊗q2, . . . , Ii2,1⊗
q1, Ii2,2 ⊗ q2, . . . , Im,n ⊗ qn ).

1.1 Lagrange’s Equations

In this paper, we consider holonomic mechanical
systems having configuration variables equal in
number to the degrees of freedom, say n. In addi-
tion, it is assumed that the kinematic and poten-
tial energies of the mechanical system are given in
terms of quadratic forms and all nonconservative
forces arise due to Rayleigh’s dissipation function
(Pars, 1965). To this end, let the generalized co-
ordinates of the system be q = [ q1, q2, . . . , qn ]T ,
the generalized velocities of the system be q̇ =
[ q̇1, q̇2, . . . , q̇n ]T , and the corresponding general-
ized control forces be u = [u1, u2, . . . , un ]T . The
kinematic and potential energies of the system are
expressed as,

T =
1
2

n∑
i,j=1

q̇imij(q)q̇j =
1
2
q̇TM(q)q̇ (3a)

V =
1
2

n∑
i,j=1

qisij(q)qj =
1
2
qTS(q)q (3b)

where M : R
n → R

n×n, M(q) > 0 for all
q ∈ R

n, S : R
n → R

n×n, and S(q)T = S(q).
In addition, the Rayleigh’s dissipation function is
a homogeneous quadratic form in terms of the
velocities and its coefficients are functions of only
the generalized coordinates q (Pars, 1965). That
is,

R =
1
2

n∑
i,j=1

q̇irij(q)q̇j =
1
2
q̇TN(q)q̇ (4)

with N : R
n → R

n×n, and N(q) > 0 for all
q ∈ R

n. Lagrange’s equations describing systems
with the Rayleigh’s dissipation function R as the
only source for nonconservative forces, except for
the control forces are given by

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
+
∂R

∂q̇i
= ui, i = 1, . . . , n (5)

where L is the Lagrangian function defined by
L = T − V . The partial derivatives ∂L

∂q̇i
, ∂L

∂qi
and

∂R
∂q̇i

can be calculated explicitly from Eq. (3) and
(4) as follows,

∂L

∂q̇i
=

n∑
j=1

mij(q)q̇j i = 1, . . . , n (6a)

∂L

∂qi
=

1
2

n∑
j,l=1

q̇j
∂mjl(q)
∂qi

q̇l −
n∑

j=1

sij(q)qj (6b)

−1
2

n∑
j,l=1

qj
∂sjl(q)
∂qi

ql, i = 1, 2, . . . , n

∂R

∂q̇i
=

n∑
j=1

rij(q)q̇j , i = 1, . . . , n (6c)

Moreover, from Eq. (6a), one obtains,

d

dt

( ∂L
∂q̇i

)
=

n∑
j=1

mij(q)q̈j +
n∑

j=1

ṁij(q)q̇j

where ṁij(q) =
∑n

l=1
∂mij(q)

∂ql
q̇l. We can then write

n simultaneous differential equations describing
the dynamics of the mechanical system as

n∑
j=1

mij(q)q̈j +
n∑

j=1

ṁij(q)q̇j − 1
2

n∑
j,l=1

q̇j
∂mjl(q)
∂qi

q̇l

+
n∑

j=1

sij(q)qj +
1
2

n∑
j,l=1

qj
∂sjl(q)
∂qi

ql

+
n∑

j=1

rij(q)q̇j = ui, i = 1, . . . , n



Introduce now the matrices Π1(q, q̇) ∈ R
n×n and

Π2(q) ∈ R
n×n as follows

Π1(q, q̇) =




n∑
l=1

∂m1l(q)
∂q1

q̇l . . .

n∑
l=1

∂mnl(q)
∂q1

q̇l

...
. . .

...
n∑

l=1

∂m1l(q)
∂qn

q̇l . . .

n∑
l=1

∂mnl(q)
∂qn

q̇l



,

Π2(q) =




n∑
l=1

∂s1l(q)
∂q1

ql . . .

n∑
l=1

∂snl(q)
∂q1

ql

...
. . .

...
n∑

l=1

∂s1l(q)
∂qn

ql . . .
n∑

l=1

∂snl(q)
∂qn

ql



.

It turns out that
∑n

j,l=1 q̇j
∂mjl(q)

∂qi
q̇l is equal to

the ith element of the vector Π1(q, q̇) q̇ and∑n
j,l=1 qj

∂sjl(q)
∂qi

ql is equal to the ith element of
Π2(q)q̇. In order to put these n differential equa-
tions into a vector form, we first notice that

∂(q̇TM(q)q̇)
∂q

= Π1(q, q̇)q̇ (7a)

∂(qTS(q)q)
∂q

= 2S(q)q +Π2(q)q (7b)

We then obtain the vector second-order form of
the dynamic equation for the mechanical system
as,

M(q)q̈ +
(
Ṁ(q)− 1

2
Π1(q, q̇) +N(q)

)
q̇

+
(
S(q) +

1
2
Π2(q)

)
q = u (8)

Comparing with Eq. (2), we obtain

M(q) =M(q) (9a)

C(q, q̇) = Ṁ(q)− 1
2
Π1(q, q̇) +N(q) (9b)

K(q) = S(q) +
1
2
Π2(q) (9c)

1.2 Assumptions

In the previous section we derived dynamic equa-
tions for a general (holonomic) mechanical system.
In order to proceed, we make the following as-
sumptions:

A1. M(q) is a constant matrix, i.e, M(q) =M .
A2. S(q) and N(q) are matrices of polynomials.

This implies that every entry in S(q) and
N(q) is a multi-variable polynomial func-
tion of the generalized coordinates q. As-
sume that the highest degrees of the vari-
ables q1, q2, . . . , qn in either S(q) or N(q) are
k1, k2, . . . , kn, respectively. Let |i| = i1 + i2 +
· · ·+ in. Then S(q) and N(q) can be written
in the following form,

S(q) = S0 +
k1+···+kn∑

|i|=1, ij≤kj

qi11 q
i2
2 . . . q

in
n S

i1,...,in

N(q) =N0 +
k1+···+kn∑

|i|=1, ij≤kj

qi11 q
i2
2 . . . q

in
n N

i1,...,in

where S0, S
i1,i2,...,in , N0, N

i1,i2,...,in ∈ R
n×n

are constant matrices of the polynomial coef-
ficients.

Since the mass matrix M(q) is constant, we have
Ṁ(q) = 0 and Π1(q, q̇) = 0. Since S(q) is a matrix
of polynomials, the (i, j) entry of Π2(q)

n∑
l=1

∂sjl(q)
∂qi

ql

is also a multi-variable polynomial function of q.
Therefore, Π2(q) is also a matrix of polynomials,
and the degrees of q1, q2, . . . , qn in Π2(q) are k1+
1, k2 + 1, . . . , kn + 1, respectively. Then Π2(q) can
be expanded as,

Π2(q) =
k1+···+kn+n∑
|i|=1, ij≤kj+1

qi11 q
i2
2 . . . q

in
n Φi1,...,in

where Φi1,i2,...,in ∈ R
n×n are constant matrices of

the polynomial coefficients with elements given by

Φi1,i2,...,in
r,p = (ir + 1)(Si1−1,i2,...,ir+1,...,in

1,p +

Si1,i2−1,...,ir+1,...,in

2,p + · · ·+ Si1,i2,...,ir,...,in

ir,p +

· · · + Si1,i2,...,ir+1,...,in−1
n,p )− Si1,i2,...,ir,...,in

ir,p

(10)

where 1 ≤ r, p ≤ n. Notice that Φ is not unique.
Defining now

K(q) := S(q) +
1
2
Π2(q), C(q) := N(q) (11)

a mechanical system satisfying the Assumptions 1
and 2 can be written as,

Mq̈ + C(q)q̇ +K(q)q = u (12)

Example 1.1 As an application of the previous
analysis, let us study the following mechanical sys-
tem. Assume that the kinetic energy, the potential
energy, and the Rayleigh’s dissipation function of
the system are given by,

T =
1
2
(q̇21 + q̇22) (13a)

V =
1
2
(q41 + 2q1q2 + q22) (13b)

R =
1
2
(q̇21 + 2q̇1q̇2 + q21q2q̇

2
2) (13c)

where q1 and q2 are the generalized coordinates
and the system is a two-degree of freedom system.
The correspondingM , S(q) andN(q) matrices can
be chosen as

M =
[
1 0
0 1

]
, S(q) =

[
q21 1
1 1

]
, N(q) =

[
1 1
1 q21q2

]



Applying Lagrange’s equation to this system, the
dynamics of the system can be easily obtained in
second-order form,

q̈1 + 2q31 + q2 + q̇1 + q̇2 = u1 (14a)
q̈2 + q1 + q2 + q̇1 + q21q2q̇2 = u2 (14b)

Let q3 = q̇1 and q4 = q̇2 and define x :=
[q1, q2, q3, q4]T , be the state of the system. Then
we can put the dynamics of the system into state
space form, as follows



q̇1
q̇2
q̇3
q̇4


=




0 0 1 0
0 0 0 1
0 −1 −1 −1
−1 −1 −1 0






q1
q2
q3
q4




+




0 0 0 0
0 0 0 0

−2q21 0 0 0
0 0 0 −q21q2






q1
q2
q3
q4


 +



0 0
0 0
1 0
0 1


u

with u = [u1, u2 ]T . Introducing the constant
matrices A, B and a state-dependent matrix Ã(q)

A =




0 0 1 0
0 0 0 1
0 −1 −1 −1
−1 −1 −1 0


 , B =



0 0
0 0
1 0
0 1


 (15a)

Ã(q) =




0 0 0 0
0 0 0 0

−2q21 0 0 0
0 0 0 −q21q2


 (15b)

The dynamics of system can be conveniently writ-
ten as,

ẋ = Ax+ Ã(q)x+Bu (16)

2. LFTS FOR MECHANICAL SYSTEMS

In the matrix second-order system of Eq. (12),
recall that K : R

n → R
n×n and C : R

n →
R

n×n are matrices of polynomials of the states.
Let us decompose K(q) and C(q) in the following
manner,

K(q) = K̃(q) +K0, C(q) = C̃(q) + C0

K0 = S0, C0 = N0
(17)

where K0 ∈ R
n×n, C0 ∈ R

n×n, K̃ : R
n → R

n×n,
C̃ : R

n → R
n×n and C̃(0) = 0, K̃(0) = 0. The

state-dependent matrices K̃(q) and C̃(q) may be
written out explicitly as,

K̃(q) =
k1+···+kn∑

|i|=1, ij≤kj

qi11 · · · qin
n S

i1,...,in

+
1
2

k1+···+kn+n∑
|i|=1, ij≤kj+1

qi11 . . . q
in
n Φi1,...,in (18a)

C̃(q) =
k1+···+kn∑

|i|=1, ij≤kj

qi11 · · · qin
n N

i1,...,in (18b)

In order to put the system into first order from,
we now let x = [q, q̇]T and W =M−1,

A =
[

0 In
−WK0 −WC0

]
(19a)

Ã(q) =
[

0 0
−WK̃(q) −WC̃(q)

]
(19b)

B =
[
0
In

]
(19c)

where x ∈ R
2n, A ∈ R

2n×2n, Ã : R
n → R

2n×2n,
B ∈ R

2n. Then Eqs. (12) can be rewritten in state-
space form as

ẋ = Ax+ Ã(q)x+Bu (20)

Since K̃(q) and C̃(q) are matrices of polynomials,
Ã(q) is also a matrix of polynomials. It can be
easily established that the degrees of the variables
q1, q2, . . . , qn in Ã(q) are k1 + 1, k2 + 1, . . . , kn + 1
respectively. Specifically, Ã(q) takes the form,

Ã(q) =
k1+···+kn+n∑
|i|=1, ij≤kj+1

qi11 · · · qin
n A

i1,...,in (21)

where Ai1,i2,...,in ∈ R
2n×2n is given by

Ai1,...,in
r,p = 0, 1 ≤ r ≤ n, 1 ≤ p ≤ 2n

Ai1,...,in
r,p = −

n∑
l=1

Wr,lS
i1,...,in

l,p − 1
2

n∑
l=1

Wr,lΦ
i1,...,in

l,p

with n < r ≤ 2n, 1 ≤ p ≤ n

Ai1,...,in
r,p = −

n∑
l=1

Wr,lN
i1,...,in

l,p

with n < r ≤ 2n, n < p ≤ 2n

From the previous derivation, it follows immedi-
ately that the pair (A, B) is controllable and that
Ã(0) = 0. Accordingly, Eq. (20) can be put in the
following LFT form (Zhou et al., 1996),

ẏ =Ay +Bpp+Bu

q =Cqy +Dqpp (23)

p=∆(q)q

where ∆(q) ∈ Ψ is a diagonal matrix and its
diagonal elements are the states of the system, and
where Bp ∈ R

2n×m and Cq ∈ R
m×2n satisfy

Bp∆(q)(Im −Dqp∆(q))−1Cq = Ã(q) (24)

for some constant matrix Dqp ∈ R
m×m.

2.1 Well-Posedness

The LFT model (23) is well posed inside a set Ω ∈
R

2n if for any q ∈ Ω, the matrix (Im −Dqp∆(q))
is invertible (Ghaoui and Scorletti, 1995). The
following lemma shows that for any monomial in
Ã(q), we can construct an LFT with a special
structure for the matrix Dqp.



Lemma 2.1. For an arbitrary monomial of Ã(q),
say, γ(q) = q�11 q

�2
2 . . . q

�n
n with $ = $1 + $2 + . . . +

$n, there exists B(i) ∈ R
�, C(i) ∈ R

�×n, a low
triangular matrix D(i) = L� and a diagonal matrix
∆(i)(q) = diag(q1I�1 , q2I�2 , . . . , qnI�n

), such that
γ(q) = B(i)∆(i)(q)(Il −D(i)∆(i)(q))−1C(i).

Proof. Without loss of the generality, we may
assume that $n �= 0. Define the vector G :=
($1, $2, . . . , $n) ∈ N

n
0 and associate the following

matrices to G
E1(G; q) = diag(q1I�1 , q2I�2 , . . . , qnI�n

), $n �= 0

E2(G; q) =
[
I�−1

... 0(�−1)×1

]E1(G; q)

 I�−1

. . . . . . . .
01×(�−1)




In addition, define the state-dependent matrix

S(q) =




01×�

. . . . . . . . . . . . . . . . . . .

E2(G, q)
... 0(�−1)×1


 (26)

A simple calculation shows that I�−D(i)∆(i)(q) =
I� − S(q) which can be written explicitly as,




1
−q1 1

. . .
. . .

−q1 1
−q2 1

. . .
. . .

−q2 1
−q3 1

. . .
. . .

−qn 1




Since the determinant of I�−D(i)∆(i)(q) is always
one, its inverse exists and a simple calculation
shows that the inverse is also in lower-triangular
form, the diagonal elements are all 1, and the sub-
diagonal elements are the same as the negative
of the diagonal elements in E2(G; q). The inverse
(I� −D(i)∆(i)(q))−1 can thus be written explicitly
as,




1
q1

q2
1 1
.
.
.

. . .
. . .

ql1
1 . . . q1 1

ql1
1 q2 . . . q2 1
.
.
.

.

.

.
. . .

. . .

ql1
1 ql2

2 . . . q2 1

ql1
1 ql2

2 q3 . . . q3 1
.
.
.

.

.

.
. . .

. . .

ql1
1 ql2

2 . . . qln−1
n . . . . . . −qn 1




Defining B(i) := [0 0 · · · 0 1], and C(i) :=
[1 0 · · · 0 0]T we conclude that

γ(q) = B(i)∆(i)(q)(Il −D(i)∆(i)(q))−1C(i).

This means that every monomial of Ã(q) can be
put in an LFT form with a lower triangular matrix
D(i) = L�.

Remark 2.1 The previous LFT representation is
not unique. Therefore, the decomposition for γ(q)
provided in Lemma 2.1 involves a matrix ∆(i)(q)
is not necessary of minimal dimension. Model
reduction techniques can be applied to reduce
the order of ∆(i)(q) block, as long as the lower
triangular structure of Dqp is not affected (Beck
et al., 1996; Beck and D’Andrea, 1998).

Example 2.1 Consider the simple monomial γ(q) =
q31 q

3
2 q

2
3 , with $1 = 3, $2 = 3, $3 = 2. We have

D(i) = L8 and ∆(i)(q) = diag(q1I3, q2I3, q3I2),
B(i) = [0 0 0 0 0 0 0 1], C(i) = [1 0 0 0 0 0 0 0]T .
Then I8 −D(i)∆(i)(q) assumes the form,




1 0 0 0 0 0 0 0
−q1 1 0 0 0 0 0 0
0 −q1 1 0 0 0 0 0
0 0 −q1 1 0 0 0 0
0 0 0 −q2 1 0 0 0
0 0 0 0 −q2 1 0 0
0 0 0 0 0 −q2 1 0
0 0 0 0 0 0 −q3 1




Since the determinant of I8 −D(i)∆(i)(q) is 1, its
inverse (I8 − D(i)∆(i)(q))−1 exists and retains a
lower-triangular form,




1 0 0 0 0 0 0 0
q1 1 0 0 0 0 0 0

q1
2 q1 1 0 0 0 0 0

q1
3 q1

2 q1 1 0 0 0 0

q1
3q2 q1

2q2 q1q2 q2 1 0 0 0

q1
3q2

2 q1
2q2

2 q1q2
2 q2

2 q2 1 0 0

q1
3q3

2 q2
1q2

3 q1q2
3 q2

3 q2
2 q2 1 0

q3
1q3

2q3 q2
1q2

3q3 q1q2
3q3 q2

3q3 q2
2q3 q2q3 q3 1




After multiplying with ∆(i)(q), we obtain, ∆(i)(q)(I8−
D(i)∆(i)(q))−1, which is given by




q1 0 0 0 0 0 0 0

q1
2 q1 0 0 0 0 0 0

q1
3 q1

2 q1 0 0 0 0 0

q1
3q2 q1

2q2 q1q2 q2 0 0 0 0

q1
3q2

2 q1
2q2

2 q1q2
2 q2

2 q2 0 0 0

q1
3q2

3 q1
2q2

3 q1q2
3 q2

3 q2
2 q2 0 0

q1
3q2

3q3 q1
2q2

3q3 q1q2
3q3 q2

3q3 q2
2q3 q2q3 q3 0

q1
3q2

3q2
3 q2

1q2
3q2

3 q1q2
3q2

3 q2
3q2

3 q2
2q2

3 q2q3
2 q2

3 q3




From the previous matrix it is obvious that γ(q)
is equal to the (8, 1) element of ∆(i)(q)(I8 −
D(i)∆(i)(q))−1 and therefore we have that γ(q) =
B(i)∆(i)(q)(I8 −D(i)∆(i)(q))−1C(i).

Lemma 2.1 shows that every monomial of Ã(q)
has an LFT representation with a lower triangular
matrix D(i). To construct Ã(q) using the LFT
representation in Lemma 2.1, consider a monomial



γ(q) = q�11 q
�2
2 . . . q

�n
n and an element of Ã(q)�1,...,�n

r,p ,
let

B�1,...,�n = Ã(q)�1,...,�n
r,p Υr,n

n

C�1,...,�n = Υ1,p
n

D�1,...,�n = L�

∆�1,...,�n = diag(q1I�1 , . . . , qnI�n
)

then

B�1,...,�n∆�1,...,�n(q)(Il −D�1,...,�n∆�1,...,�n(q))−1

C�1,...,�n = γ(q)Ã(q)�1,...,�n
r,p Υr,p

n

By properly stacking all elements together, Bp, Cq,
∆(q) and a lower triangular matrixDqp = Lm, can
be constructed to satisfy Eq. (24). Let us continue
with Example (1.1) to demonstrates how this will
work out.

Example 2.2 In Example 1.1, we have derived
the nonlinear state space equations (16) for the
mechanical system given in (14). In Eqs. (15),
Ã(q) is in a matrix of polynomials, which we can
express using an LFT model. There are two mono-
mials in Ã namely, q21 and q21q2. Define ∆(q) =
diag(q1, q1, q1, q1, q2) and

Bp =



0 0 0 0 0
0 0 0 0 0
0 −2 0 0 0
0 0 0 0 −1


 , Cq =




1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




Dqp =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0




A straightforward calculation shows that

Bp∆(I5 −Dqp∆)−1Cq =




0 0 0 0
0 0 0 0

−2q21 0 0 0
0 0 0 −q21q2




which is equal to Ã(q) in Eqs.(15).

With the lower triangular structure of Dqp, we
have (Dqp∆)j = (∆Dqp)j = 0 for j ≥ m. This
nilpotency property can be used to simplify the
calculation of the inverse (Im−Dqp∆(q))−1. Under
some mild assumptions on the size of ∆(q), and
with Dqp a lower triangular matrix, we have that

(Im −Dqp∆(q))−1 = Im +
m−1∑
j=1

(Dqp∆(q))j (29)

Therefore, one can express the inverse with a finite
series of matrices of polynomials. In addition, since
Dqp is a lower triangular matrix with zero diagonal
elements, (Im − Dqp∆(q)) is always invertible.
Hence, the LFT model defined by Eqs. (23) is well
posed everywhere.

3. CONCLUSIONS

In this paper we present a methodology for
systematically constructing LFT representations
for second-order nonlinear mechanical systems.
The “uncertainty” block of this LFT is a state-
dependent structured (diagonal) block. Current
research deals with the elimination of Assumptions
1 and 2 and with use of the proposed LFTs for
stability analysis and control design for second-
order nonlinear mechanical systems.
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