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Abstract:
Many design questions in telecommunications, signal processing and control can be
formulated as inverse problems. Moreover, there is a surprising degree of similarity
in the solutions to the problems from diverse areas. Here we will outline some basic
approaches to solving inverse problems and draw connections between different areas
of application. Inverse problems become particularly interesting (and difficult) when
the solution is required to satisfy hard and/or soft constraints. Recent research results
on this topic will be outlined and the impact on practical problems discussed.

1. INTRODUCTION

Most (and arguably all) algorithmic problems in
Signal Processing, Telecommunications and Con-
trol can be viewed as inverse problems of various
types. A rough description of an inverse problem
is as follows: given an outcome (say, a set of
measurements) determine the input that leads to
(or lead to) that outcome. This class of problem
has a common mathematical foundation but takes
on slightly different forms in different fields; e.g.

Signal Processing - Say we are given a set of
river levels with errors in location (x, y) and
depth (z), and we wish to determine an underlying
model of the river depth (Moore and Grayson,
1991), (Moore et al., 1991), (Lane et al., 1994).
This can be achieved by carrying out spatial-
temporal smoothing of the data accounting for
spatial correlations, time evolution and the errors
in all measured variables. Note that here we are
inverting the procedure of using a model to predict
depths.

Telecommunications - Given the output of an
unknown and noisy telecommunications channel,
determine both the channel characteristics and
the transmitted signal (Ding and Li, 1998). Note
that here we are inverting the received data to
determine a channel model and the transmitted
signal.

Control - Given a desired output behaviour for a
process, determine the best choice of manipulated
variables to drive the process to achieve that
desired behaviour (Goodwin et al., 2001b). Note
that here we are inverting the model of the process
to determine the best driving control signal.

These kinds of problem are germane to most
(arguably all) algorithm design problems in sig-
nal processing, telecommunications and control.
The problems are made more difficult when ill-
conditioned (i.e. when the forward mapping is
near a singularity) or when the inverse must sat-
isfy constraints (e.g. the input is known to take
only a finite set of values or we require that inter-
nal variables not exceed specified levels).

The solution of inverse problems has been at
the center of developments in signal processing
(Bertero and Boccaci, 1998), (Sabatier, 1987)
telecommunications (Qureshi, 1985) and control
(Goodwin et al., 2001b) for, at least, the last
50 years. However, the three areas have evolved
somewhat disjointedly and each now has its own
set of design paradigms. Also, the importance
of inversion has often not been explicitly high-
lighted. Furthermore, different fields have tended
to emphasize different aspects. Thus stability has
been a major issue in control whereas perfor-
mance issues have dominated telecommunications
and implementation has been paramount in signal
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processing. Our goal here is to expose the com-
mon features of these problems and suggest how
cross-fertilization of ideas may lead to improved
insights.

2. INVERSE PROBLEMS IN ESTIMATION
AND CONTROL

The close connection between inverse problems in
estimation and control is highlighted in Figure 1.

Fig. 1. Inverse problems

In the control context, we usually augment the
“reference” signal, r, by other signals (typically
derived from an observer) which reflect distur-
bances and modelling errors. This is a robustifying
issue that does not alter the conceptual accuracy
of the core principle shown in Figure 1 (a). For
example, the class of all stabilizing controllers for
a stable plant is shown in Figure 2. The “model”
block in Figure 2 acts as an observer for plant
states, disturbances, etc. In the absence of distur-
bances and model errors, Figure 1(a) and Figure
2 are identical.

One minor difference between the schemes in
Figures 1(a) and 1(b) is that control uses a right
inverse whereas estimation uses a left inverse.
However, these problems are simply related by a
transpose since, in general M.I.M.O. case, y = Gu,
if and only if, yT = uTGT .

Fig. 2. All stabilizing control laws

To be a little more specific, say that the model of
a S.I.S.O. process or channel takes the following
form:

G(q) = q−d(go +G
′
(q)) (1)

Where q−1 is the unit delay operator, g0 is a
static gain and G

′
(q) is a strictly proper transfer

function. Then, assuming that G(q) is minimum
phase, the approximate inverses in Figures 1 and 2
can be implemented in the prototype form shown
in Figure 3.

When the static nonlinear block (N/L) in Figure
3 is replaced by a gain of unity, then it is readily

Fig. 3. Ad-hoc inverse

verified that the scheme generates [qdG(q)]−1.
Under these conditions, the control law on the
left reduces to the well known Smith Predictor
(Smith, 1958) or Minimum Variance Control Law
(Astrom, 1970) (under specific assumptions about
the nature of the disturbances).

3. ADDING CONSTRAINTS TO INVERSE
PROBLEMS

The prototype inverse scheme shown in Figure 3
is “constraint-free”. There are several reasons why
one may wish to add constraints to the inverse
problem. Some of these are:

(i) Stability Direct inversion as in Figures 1 to 3
may not preserve stability. Of course, it is well
known (e.g., in the linear case) that to ensure
stability, various interpolation constraints must
be added to the inverse. For example, say that
the process is stable, then one needs to avoid
any inverse which reflects the singularity asso-
ciated with unstable zeros into unstable poles.
This usually means that some form of approxi-
mation is introduced into the inverse calculation.
For example, we could ask what transfer function
is closest to the inverse in a mean square sense
subject to a stability constraint. This leads to
an inverse in which unstable zeros are reflected
through the stability boundary (Kwakernaak and
Sivan, 1972). Similarly, if one solves the estimation
problem of Figure 1(b) in a mean square sense
with vanishingly small measurement noise, then
the dual inverse is obtained (Astrom, 1970).

(ii) Robustness At a conceptual level, the issue
of robustness can be cast as requiring an ap-
proximate inverse which is not overly sensitive
to the fidelity of the model. This requires some
form of regularization of the inversion procedure
(Goodwin and Welsh, 2001), (Welsh and Good-
win, 2002). For example, in the control context,
one should exercise caution when inverting zeros
that are close to the stability boundary or which
give rise to high gains in particular frequency
ranges.

(iii) Amplitude Constraints In practical prob-
lems, one frequently requires that the inverse re-



spect certain hard (i.e. amplitude) constraints.
For example, say that the signal u in Figure 1(a)
is required to lie in the range −1 ≤ u ≤ 1.
One simple solution to solve this problem is to
replace the nonlinear element in Figure 3 by
a saturation function. Indeed, this leads to the
most common form of anti-windup solution to
S.I.S.O. constrained control problems (Bernstein
and Michel, 1995), (Hanus et al., 1987), (Hippe
and Wurmthaler, 1997), (Kapoor et al., 1996),
(Lozier, 1956), (Kothare et al., 1994). A related
problem is when the signal u is required to be one
of two levels {+1, −1} or more. In this case, it
seems reasonable to replace the nonlinear block
in Figure 1(a) by a sign function (or quantizer).
This leads to an anti-windup form of on-off control
and its generalizations (Quevedo et al., 2002).

It is also helpful to introduce the term, “constraint
horizon one”, to describe this type of strategy. The
reason for the use of this terminology is that the
constraints are dealt with one time step at a time.
Note that this does not imply that the inverse has
zero memory. Indeed, the feedback path in Figure
3, which can be thought of as an observer for the
system states, gives rise to memory in the inverse
(De Doná et al., 2000).

Turning to the estimation problem of Figure 1(b),
it is common in digital communications that the
transmitted signal, ω is a scalar belonging to a
finite alphabet e.g. ω ∈ Ω = {s1, . . . , sn} or
specifically ω = ±1 when n = 2. It then makes
sense to place a similar restriction on ω̂ in Figure
1 (b). This again suggests the use of the sign
function (or quantizer)in Figure 2. Indeed, this
is a very well known solution commonly called a
Decision Feedback Equalizer (Ding and Li, 1998).
Interestingly, the above discussion shows that the
Decision Feedback Equalizer problem and the
finite set control problem are closely related. More
will be said on this topic below.

Naturally, one can go beyond the simple kinds of
constraints mentioned above. For example, in the
control problem, we sometimes require that cer-
tain internal states of the system not exceed spec-
ified levels. “Anti-windup”, or “constraint horizon
one”, solutions can also be developed for these
kinds of problems (Rojas and Goodwin, 2002).

(iv) The “Cost” of Constraints Naturally, adding
constraints to an inverse problem will reduce the
achievable performance. This is a topic of con-
siderable practical importance and has attracted
continuous interest since the pioneering work of
Bode (Bode, 1945) on the impact of stability con-
straints on sensitivity integrals in the frequency
domain. The results on performance limitations
due to constraints can be divided into two classes:

(i) limitations which hold for all possible designs
which respect the constraints, e.g., Bode’s
sensitivity integrals (Bode, 1945), (Seron et
al., 1997). These reflect the inherent trade-
offs involved in constrained designs.

(ii) limitations which give lower bounds on the
best possible performance, e.g., for L2 per-
formance (Qui and Davison, 1993).

Some results also exist on the connections be-
tween these types of limitation – see (Middleton
and Braslavsky, 2000). Most existing work holds
for linear systems subject to stability constraints.
However, there exists some recent work on ex-
tensions to nonlinear systems (Braslavsky et al.,
1999), (Pérez et al., 2001), (Goodwin et al., 2000)
and (Iglesias, 2001).

4. SOLUTIONS VIA OPTIMIZATION

The prototype solution to the approximate in-
verse problems shown in Figure 3 is ad-hoc. We
are thus led to ask if one can cast the inverse
approximation problem as an optimization prob-
lem. Depending on the criterion, one is lead to
various standard optimization problems such as
L1, L2, L∞ and combinations thereof (Zhou et
al., 1998).

With hard constraints, optimization becomes a
“natural” way to proceed. Indeed, one can read-
ily set up either the control or estimation prob-
lems as constrained optimization problems. This
is standard in the control area where it leads
to, so called, Model Predictive Control (Richalet
et al., 1976), (Garcia et al., 1989), (Rawlings et
al., 1994), (Morari and Lee, 1997), (Mayne et al.,
2000), (Qin and Badgwell, 1997), (Mayne, 2000),
(Michalska and Mayne, 1993). The dual problem
in estimation is known as Receding Horizon Es-
timation (Michalska and Mayne, 1995), (Muske
et al., 1993), (Robertson et al., 1996), (Rao et
al., 2001). Both problems have been the subject
of intense research interest in recent years.

In the next two sections we will give slightly more
detail on the formulation of control and estimation
problems for constrained linear systems.

5. CONSTRAINED CONTROL

Model Predictive Control (or MPC) is a con-
trol algorithm based on solving an open-loop
constrained optimal control problem (Mayne et
al., 2000). A receding horizon approach is then
used, to implement the control law. This can be
summarised in the following steps:

(i) At time k and for the current state x(k),
solve, (typically on-line), an open-loop op-



timal control problem over some future in-
terval, taking into account the current and
future hard constraints on inputs and states.

(ii) Apply the first step in the optimal control
sequence.

(iii) Repeat the procedure at time (k + 1) using
the current state x(k + 1).

The solution is converted into a closed-loop strat-
egy by using the measured value of x(k) as the
current state. When x(k) is not directly measured,
then one can obtain a closed-loop policy by replac-
ing x(k) by an estimate provided by some form of
observer (Pérez and Goodwin, 2001). In a general
nonlinear setting, the method is as follows.

Given a model

x(�+ 1) = f(x(�), u(�)), x(k) = x , (2)

the MPC at event (x, k) is computed by solving a
constrained optimal control problem:

PN (x) : V opt
N (x) = min

u∈UN

VN (x,u) ,

where

u = {u(k), u(k + 1), . . . , u(k +N − 1)} ,

VN (x,u) =
k+N−1∑

�=k

L(x(�), u(�)) + F (x(k +N)) ,

and UN is the set of u that satisfy the constraints
over the entire interval [k, k +N − 1]:

u(�) ∈ U � = k, k + 1, . . . , k +N − 1 ,
x(�) ∈ X � = k, k + 1, . . . , k +N ,

together with the terminal constraint

x(k +N) ∈ Xf .

Usually, U ⊂ R
m is convex and compact, X ⊂ R

n

is convex and closed, and Xf is a set that can be
appropriately selected to achieve stability (Mayne
et al., 2000).

In the above formulation, the model and cost
are time invariant. Hence, one obtains a time-
invariant feedback control law. In particular, we
can set k = 0 in the open loop control problem
without loss of generality. Then at event (x, k) we
solve:

PN (x) : V opt
N (x) = min

u∈UN

VN (x,u) , (3)

where

u = {u(0), u(1), . . . , u(N − 1)} , (4)

VN (x,u) =
N−1∑
�=0

L(x(�), u(�)) + F (x(N)) , (5)

subject to

u(�) ∈ U � = 0, 1, . . . , N − 1 , (6)
x(�) ∈ X � = 0, 1, . . . , N , (7)
x(N) ∈ Xf . (8)

Let the minimising open-loop control sequence be

uopt(x) ={uopt(0;x), uopt(1;x), . . . ,
uopt(N − 1;x)} ;

(9)

then the actual control applied at time k is the
first element of this sequence, i.e.,

u = uopt(0;x) . (10)

Time is then stepped forward one instant, and the
above procedure is repeated for another N -step-
ahead optimisation horizon. The first input of the
new N -step-ahead input sequence is then applied.
The above procedure is repeated endlessly.

The above MPC implicitly defines a time-invariant
control policy KN : X → U of the form

KN (x) = uopt(0;x) . (11)

It is usual in MPC to compute numerically, at
event (x, k), the optimal control move KN (x)
rather than pre-computing the control law KN (·).
However, as we shall argue below, there are cases
where KN (·) can be pre-computed and the control
law implemented via evaluation of KN (·) . When
the system is linear, the model can be expressed
as

x(�+ 1) = Ax(�) +Bu(�) , (12)
y(�) = Cx(�) , (13)

where x(�) ∈ R
n, u(�) ∈ R

m, and y(�) ∈ R
m .

Reference tracking and disturbance rejection can
be readily added to the basic setup described
above. Thus, consider the problem of tracking a
constant setpoint ys and rejecting a time-varying
output disturbance {d(�)}. We can formulate this
as a regulation problem by defining the error

e(�) = y(�) + (d(�) − ys) . (14)

It is convenient to make no distinction between
the output disturbance and the setpoint. We thus
define an “equivalent” output disturbance de as
the signal

de(�) = d(�) − ys . (15)

Without loss of generality, we take the current
time as 0.

Assuming knowledge of the external signal de

and the current state measurement x(0) =
x, then the M -move control sequence u =
{u(0), u(1), . . . , u(M − 1)} is defined by minimis-
ing the finite-horizon cost:



VN,M (x,u) =[x(N) − xs]tQf [x(N) − xs]

+
N−1∑
�=0

et(�)Qe(�)

+
M−1∑
�=0

[u(�) − us]tR[u(�) − us] ,

(16)

where Q ≥ 0, R > 0, Qf ≥ 0. In (16), N is
the prediction horizon and M ≤ N is the control
horizon. The quantities, us and xs, are steady
state values defined below.

We assume that de(�) in (15) contains time-
varying components as well as a constant (steady-
state) component, denoted by d̄e. Then, from (15),

d̄e = d̄− ys , (17)

where d̄ is the constant component of the output
disturbance d(�).

In equation (16), we then let us and xs be the
steady state values of u and x:

us = −[C(I −A)−1B]−1d̄e , (18)

xs = (I −A)−1Bus . (19)

The minimisation of (16) is performed on the
assumption that the control reaches its steady
state value after M steps, that is u(�) = us, ∀� ≥
M . We also assume that the setpoint ys and the
corresponding input and steady state values, us

and xs, are feasible, i.e., they satisfy the required
constraints. The dynamic optimisation problem
described above is transformed into a nondynamic
constrained quadratic program. To see this, we
start by writing, from (12) and using Bus = (I −
A)xs: 1

x − xs = Γu + Ωx− xs , (20)

where

x =



x(1)
x(2)

...
x(N)


 ; xs =



xs

xs

...
xs


 ; u =




u(0)
u(1)

...
u(M − 1)


 ;

(21)

Ω =



A
A2

...
AN


 ;xs =




xs

xs

...
xs

Axs

...
AN−Mxs




;

1 With a slight abuse of notation, we use bold letters to
denote both sequences and “piles” of vectors.

Γ =




B 0 . . . 0 0
AB B . . . 0 0
...

...
. . .

...
...

AM−1B AM−2B . . . AB B

AMB AM−1B . . . A2B AB
...

...
. . .

...
...

AN−1B AN−2B . . . . . . AN−MB



.

Then, using (20), (21) and

Q =diag[CtQC, . . . , CtQC,Qf ] , (22)
R =diag[R, . . . , R] , (23)
us =[ut

s u
t
s . . . ut

s]
t , (24)

D =[de(0)t − d̄t
e , de(1)t − d̄t

e, . . . de(N − 1)t

− d̄t
e, 0]t , (25)

Z =diag[CtQ,CtQ, . . . CtQ] , (26)

we can express (16) as

VN,M (x,u) =et(0)Qe(0)
+ (x − xs)tQ(x− xs)
+ (u− us)tR(u− us)
+ 2(x− xs)tZD
+ Dt diag[Q,Q, . . . , Q]D

=V + utWu + 2ut(Fx+H) .

(27)

In (27), V is independent of u and

W = ΓtQΓ + R , F = ΓtQΩ (28)
H = −ΓtQxs − Rus + ΓtZD . (29)

Next we show how constraints can be introduced
into the problem formulation. Magnitude and rate
constraints on the plant input and output can be
expressed as follows, for � = 0, 1, . . . , T − 1:

umin ≤ u(�) ≤ umax ,

ymin ≤ y(�) ≤ ymax , (30)
δumin ≤ u(�) − u(�− 1) ≤ δumax .

These constraints can be written as linear con-
straints on u of the form

Lu ≤ K . (31)

We note that optimization of (27) subject to (31)
is a standard Quadratic Programming Problem
(Bazaraa and Shetty, 1979). It is also possible
to include finite alphabet constraints as detailed
in (Quevedo et al., 2002). In these various opti-
mization problems it is possible to utilize different
values for the prediction horizon, N , input hori-
zon, M , and constraint horizon, T . Typically, one
chooses O < T ≤M ≤ N . The case, T = 1, corre-
sponds to the “constraint horizon one” solution.



6. CONSTRAINED STATE ESTIMATION

A similar procedure to that described in section
5 can be used for constrained state, estimation
problems (Michalska and Mayne, 1995), (Muske et
al., 1993), (Robertson et al., 1996). To illustrate,
consider a linear discrete time system of the form:

xk+1 = Axk +Bωk (32)
yk = Cxk + νk (33)

where {ωk}, {νk} are white noise sequences of
covariance Q and R respectively around mean
values of {ω̄k} and zero. We also assume that xo

has a-priori mean x̂o|o and covariance Po|o. If we
assume Gaussian distributions for the errors, then
the negative log-likelihood function given data
{y1, . . . , yN} can be written

J =
1
2
(x̂o − x̂o|o)tP

−1
o|o (x̂o − x̂o|o)

+
1
2

N∑
k=1

(yk − Cx̂k)tR−1(yk − Cx̂k)

+
1
2

N−1∑
k=0

(ω̂k − ω̄k)tQ−1(ω̂k − ω̄k) (34)

where x̂k, ω̂k are related by

x̂k+1 = Ax̂k + ω̂k ; k = 0, . . . , N − 1 (35)

In the unconstrained case, it is well known that
optimizing (34) subject to (35) with respect to
{x̂o, ω̂o, , . . . , ω̂N−1} leads to the Kalman Fil-
ter. The problem posed above can be solved in
a variety of ways including (forward) Dynamic
Programming etc.. We can also readily recast
the above fixed interval estimation problem into
the familiar framework of quadratic optimization.
Specifically, let

Z =




x̂o

ω̂o

...
ω̂N−1


 (36)

Then the cost J in (34) can be expressed as:

J =
1
2
ZtHZ + dtZ (37)

where

H =
[
LtP−1

o|oL+MtR1M + StΩ−1S
]

(38)

d = −
[
LtP−1

o|o x̂o|o +MtR−1Y + StΩ−1W
]
(39)

with

L = [I, 0, . . . , 0]t ; S =



0 I 0
...

. . .
0 · · · 0 I


 ; (40)

M =



CA CB
CA2 CAB CB

...
. . .

CAN · · · · · · CB


 (41)

R−1 = diag
[
R−1

]
; Ω−1 = diag

[
Q−1

]
; (42)

Y =



y1
...
yN


 ;W =




ω̂o

...
ω̂N−1


 (43)

Linear inequality constraints on {x̂k ; k =
0, . . . , N} and/or {ω̂k ; k = 0, . . . , N − 1} can
be expressed as

ΛZ ≤ g (44)

where the above inequality should be interpreted
componentwise. This problem is then in the form
of a standard QP problem (Bazaraa and Shetty,
1979) as in section 5.

7. DUALITY ISSUES

Both of the problems in section 5 and 6 can
readily be written in dual forms. For example, the
Lagrangian dual of problem (37) subject to (44)
can be expressed as:

Maximize
1
2
λtDλ+ λtγ (45)

subject to
λ ≥ 0 (46)

where

D = −ΛH−1Λt (47)

γ = −g − ΛH−1d (48)

Indeed, it is instructive to expose the duality in
detail wherein one sees that the dual of a finite
horizon constrained state estimation problem is
a finite horizon constrained control problem and
vice versa.

As explained in section 5, in control, one typically
optimises over a future horizon {k+1, . . . , k+N}
with respect to the controls {uk, . . . , uk+N−1}.
One then implements uk and the state evolves to
xk+1. One then repeats the optimization based on
the horizon {k+2, . . . , k+N+1} and so on. Thus,
the state evolution from time k to k + 1 provides
a natural way of interconnecting the various finite
horizon problems.

In estimation, one typically optimizes over a past
horizon {k−N, . . . , k} given data {yk−N+1, . . . , yk}
leading to the current estimate x̂k|k. Based on the
cost function given in (37), this begs the question



of where x̂k−N |k−N comes from. A natural choice
is to set this equal to the final estimate obtained
from an earlier fixed interval estimation problem
(Rao et al., 2001). We call this Rolling Horizon
Estimation and note that it requires that N pre-
vious final state estimates be stored for future use
(De Doná et al., 2002). Of course, in the absence
of constraints, this rolling horizon strategy will
again lead to the Kalman filter provided P−1

k|k is
chosen as the appropriate estimation covariance.

In subsection 10.6 we will review a specific appli-
cation of Duality ideas to a practical problem.

8. DECISION FEEDBACK EQUALIZERS
REVISITED

To give a further illustration of constrained esti-
mation, we will reinterpret the solution shown in
Figure 1(b) and 3. To better link with contempo-
rary literature, assume that G(q) in (1) has a finite
impulse response (FIR), i.e., G′(q) = Σ�

i=1giq
−i,

and that the scalar {ωk} is drawn from a finite
alphabet. We can readily formulate the model in
state space form by defining

xk
�
=



ωk−1

ωk−2

...
ωk−�−d


 (49)

Then, the FIR model can be written as

xk+1 = Axk +Bωk (50)
yk = Cxk + νk (51)

where {ωk}, {νk} represent the input data stream
and the measurement noise sequence respectively.

Here, A,B,C take the following special forms:

A =




0 . . . . . . 0
1

. . .
1 0


 ; B =




1
0
...
...


 (52)

C = [0 . . . 0︸ ︷︷ ︸
d−1

go . . . g�︸ ︷︷ ︸
�+1

] (53)

As before, we begin by taking {ωk}, {νk} as
Gaussian noise sequences of variance Q and R
respectively. Taking {ω̄k = 0} and optimizing (34)
or (37), without constraints, leads to the standard
Kalman Filter, i.e.,

x̂k|k =x̂k|k−1 + Pk|k−1C
t

(R+ CPk|k−1C
t)−1(yk − Cx̂k|k−1)

(54)
Pk|k =Pk|k−1 − Pk|k−1C

t

(R+ CPk|k−1C
t)−1CPk|k−1 (55)

x̂k+1|k =Ax̂k|k (56)
Pk+1|k =APk|kAt +BQBt (57)

If we define P as the solution of the associated
steady state Riccati equation, then P0|0 in (34) is
defined via (55) with Pk|k−1 replaced by P . In this
case (54) takes the time variant form:

x̂k|k = x̂k|k−1 + J(yk − Cx̂k|k−1) (58)

where

J = PCt(R + CPCt)−1

=



J1

...
J�+d


 (59)

A simple special case arises when R → 0 (van-
ishing measurement noise) and when the zeros
of the channel model are all stable. In this case,
it is readily seen that the steady state solution,
Po = [Pij ] to the Riccati equations becomes:

Pij =
{

Q for i = j ≤ d
0 otherwise

}
(60)

so that

Ji =




1
go

for i = d

0 otherwise


 (61)

Substitution into (49) leads to the intuitively
appealing result:-

ω̂k|N =0 for k = N, . . . , N − d+ 1

(62)

ω̂N−d|N =
1
go

[
yN − g1ω̂N−d−1|N−1 . . .

−g�ω̂N−d−�|N−1

]
(63)

ω̂N−d−j|N =ω̂N−d−j|N−1 ; j = 1, . . . , � (64)

Perhaps, not unexpectedly, the above solution
corresponds exactly to the inverse described in
Figure 3 where the N/L block is replaced by a
unity gain.

Next, we consider the case where {ωk} is known to
be drawn from a finite alphabet. In this case, we
can proceed by optimizing (34) with Po|o chosen
as above and subject to (35) and an additional set
of finite set constraints, e.g.

{ω̂k} ∈ Ω (65)

where Ω is defined in (iii) of section 3.



Due to the discrete nature of the constraint (65),
this is a non-convex problem. However, we can
proceed to solve the problem using Dynamic Pro-
gramming. Indeed, this strategy is well known and
is usually called the Viterbi algorithm (Viterbi
and Omura, 1979). An interesting special case is
when we take the optimization horizon as N = 1.
In this case, one can solve the constrained opti-
mization problem in a closed form, leading to

ω̂N−d|N = qΩ{Θ} (66)

where

Θ =
1
go

[yN − g1ω̂N−d−1|N−1 . . .− g�ω̂N−d−�|N−1]

(67)
where qΩ{·} is the nearest neighbour mapping to
the set Ω e.g. qΩ is the sign function in the case
that Ω = {−1,+1} – see (Quevedo et al., 2002).

Interestingly, we see that we have rederived the
well known Decision Feedback Equalizer solution
(Qureshi, 1985). By changing the Optimization
Horizon one can generate a spectrum of con-
strained estimates between Decision Feedback and
the full Viterbi algorithm (Forney Jr., 1972) – See
also (Eyuboglu and Quereshi, 1988)(Forney Jr.
et al., 1984), (Duel-Hallen and Heegard, 1989)
and especially (Williamson et al., 1992) and the
related work (Quevedo et al., 2002).

9. SOME RECENT RESEARCH RESULTS

There exists a vast literature on the topics of
constrained control and estimation. Some of the
topics addressed in the recent literature include:

• stability of receding horizon controllers (Mayne
et al., 2000), (De Doná et al., 2001)

• stability of anti-windup control schemes (Kapoor
et al., 1996)

• connections between anti-windup (in the
sense of “constraint horizon one”) and reced-
ing horizon controllers (De Doná and Good-
win, 2000)

• stability of decision feedback equalizers (Kennedy
et al., 2000)

• stability of rolling horizon estimators (Robertson
et al., 1996)

• extension to nonlinear systems (Mayne et al.,
2000), (Mayne, 2000), (Muske et al., 1993),
etc.

A particular observation which may have practi-
cal importance (Bemporad et al., 2002), (Seron
et al., 2000b), (Seron et al., 2000a) is that con-
strained linear control problems with interval con-
straints of the type discussed in section 5 lead to
a finite set of linear feedback control laws each
of which holds in a particular partition of state
space. This gives a finitely paramaterized form

of the state feedback control law of (11). This
explicit form of the map KN (·) in (11) allows
one to implement constrained Receding Horizon
Control by an on-line table look up. Indeed, the
“constraint horizon one” results of (De Doná et
al., 2000) can be thought of as a special case of
these more general structures. For finite alphabet
constraints, an explicitly parameterized solution is
also possible (Quevedo et al., 2002). These results
allow the full range of closed-loop behaviour to
be verified prior to implementation. This may
enhance the practical appeal of these methods in
time-critical applications as well as enhancing the
understanding of the nature of constrained control
polices.

10. SOME APPLICATIONS

We illustrate the application of constrained in-
verse problems to several real world questions.

10.1 Noise Shaped Wordlength Reduction in CD
Production

When the output of a 44.1 kHz 24-bit digital
mixing console is fed to the master stage in the
production of a CD, the wordlength must be
reduced to 16 bits. In essence this is a constrained
inverse problem due to the quantized nature of
the output. A typical scheme used in practice is
shown in Figure 4 (McGrath, 2002).

Fig. 4. Noise shaped wordlength reduction

We see that this feedback scheme is a two-degree-
of-freedom form of the scheme shown in Figure 2.
The dither signal in Figure 4 is used to ensure that
the quantization errors are ‘decorrelated’ from the
audio signal. The purpose to the FIR filter is to
force the quantization noise to fit a particular
profile. Further constraints usually appear due to
the fact that it is desirable that the filter have a
simple 2’s arithmetic implementation. The least
mean square output noise occurs when F (q−1)
is chosen as zero. However, there is a ‘frequency
dimension’ to this problem since the human ear
is less sensitive to high frequency ‘noise’. Thus
the design goal is to adjust the transfer function,
F (q−1) so as to shape the frequency content of
the errors. Taking a linear view of this problem,



we see that the transfer function connecting the
quantization noise to the audio output is

S(q−1) = 1 − F (q−1) (68)

A natural question that might be asked here
would be; “Are there any limitations on the extent
to which the quantization noise can be reduced?”
Of course, we recognize S(q−1) as a standard
feedback sensitivity function which must satisfy
a Bode type integral; i.e.

∫ π

0 log|S(eiθ)|dθ = 0.
We thus know that reduction of the quantization
noise level in one frequency band (usually low fre-
quencies) must be accompanied by an increase in
quantization noise level in other frequency bands
(usually high frequencies). A typical Bode plot for
S(q−1) is shown in Figure 5. Figure 4 gives a “con-
straint horizon one” solution. One can also readily
conceive of other schemes, based on optimization,
which use larger constraint horizons.
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Fig. 5. Bode plot

10.2 Active Noise Cancelling Headsets

Most of the research and theory in noise can-
celling uses an adaptive feed-forward system. (i.e.
you usually have 2 measuring transducers, one
to measure the noise input to the system, and
one to measure the residual/error noise at the
cancellation point). However, the noise cancella-
tion done in most cheap headphones (as used on
some airlines etc...) does not use feed-forward.
Instead, a simple feed-back loop is used, with a
single microphone inside the headset, close to the
listener’s ear entrance. A simplified view is shown
in Figure 6.

This can again be converted into a constrained
inversion problem. Again using the standard Bode
theory, it is easy to understand the fundamental
limits that apply in this system. For example;

(a) Group delay (from speaker to microphone) is
the single biggest problem, because it reduces

Fig. 6. Noise cancellation

the maximum bandwidth that the noise re-
duction will work over (DC-1.5 kHz is typi-
cal).

(b) If you want to reduce the noise in one band
(DC-1.5kHz) you must also suffer an increase
in the noise outside of this band.

10.3 Rudder Roll Stabilization (RRS)

Besides controlling the heading of a ship, it is also
desirable to reduce the rolling motion produced
by the waves so as to prevent cargo damage and
improve crew efficiency and passenger comfort.
Conventional methods for ship roll stabilization
include water tanks, stabilizing fins, and bilge
keels; however, RRS is attractive because no extra
equipment needs to be added to the ship and
it performs similarly to other methods (Fossen,
1994).

From the control design point of view, the main
limiting factor of the RRS problem is the highly
non linear behavior of the mechanical devices that
command the rudder. These devices essentially
impose constraints on the maximum slew rate and
excursion attainable for the rudder movement.
This, makes, in some cases, traditional linear con-
trol design inadequate since the generated control
signals are typically too large to be realistic (van
Amerongen et al., 1990). MPC is clearly a can-
didate to solve this constrained inverse problem
(Goodwin et al., 2000).

In order to describe the motion of a ship, six inde-
pendent coordinates are necessary. The first three
coordinates and their time derivatives correspond
to the position and translational motion while the
other three coordinates and their time derivatives
correspond to orientation and rotational motion
description. For marine vehicles, the six different
motion components are called: surge, sway, heave,
roll, pitch, and yaw. Accordingly, the most gener-
ally used notation for theses quantities are: x, y, z,
φ, θ, and ψ respectively, while their time deriva-
tives are denoted u, v, w, p, q, and r respectively.
Figure 7 shows the coordinate definitions and the
most generally adopted reference frame.

Special features of this control problem include:



Fig. 7. Magnitudes and conventions for ship mo-
tion description

1 The system has two outputs (namely roll
and yaw), but only one manipulated variable
(rudder angle).

2 The system is ill-conditioned. Specifically,
it is nonminimum phase (i.e. the roll re-
sponse initially goes in the wrong direction).
This leads to a form of ill-conditioning in
the associated inverse control problem since
the model contains a singularity in a region
where it cannot be cancelled. It is known
that this kind of ill-conditioning is central
to linear control performance constraints (see
(Seron et al., 1997)).

3 The system is marginally stable (i.e. the
yaw will integrate in response to a rudder
displacement).

4 The input (rudder) is subject to significant
constraints on both amplitude and slew rate.

Hence this problem captures many of the fea-
tures associated with typical ill-conditioned in-
verse problems incorporating constraints.
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Fig. 8. Preliminary design results for RRS

Preliminary design results are shown in Figure
8. The curve marked Cheap Control shows the
tradeoff between reducing roll (horizontal axis)
and the inevitable impact on yaw (vertical axis).
This curve shows the greater the roll reduction,
the higher is the cost in terms of yaw perturba-
tions. Also, note that, no matter how large the
control effort, there is a limit to how much the
roll can be reduced – this is a consequence of

the nonminimum phase character of the system
which means that exact inversion is not possible.
The curve marked MPC applies when constraints
(rudder, amplitude and slew rate) are added to the
problem. We see that the presence of constraints
impacts in a negative way on the performance
tradeoff and that the best achievable roll reduc-
tion is degraded relative to the unconstrained case
(Goodwin et al., 2000).

10.4 Cross Directional Control of Shape in Rolling
Mills

Typically, cross directional control of web form-
ing processes is performed with an identical ar-
ray of actuators and a corresponding identical
array of sensors. Industrial applications are typ-
ically under-actuated since, actuator movements
are constrained and thus are generally unable to
remove all steady state spatial frequency modes of
disturbances. Such problems occur in a variety of
applications including paper machines, (Dumont,
1986), (Smook, 1982), (Stewart et al., 1998), flat
metal rolling (Goodwin et al., 1990), (Carney et
al., 1990), (Edwards et al., 1995) and plastic film
extrusion (Heath, 1996), (Levy and Carley, 1989).
One of the characteristic features of this kind of
problem is that each actuator influences a broad
cross directional area which typically exceeds the
area “seen” by a single corresponding sensor.

Various cross directional control strategies have
been described in the literature. For example,
Model Predictive Control (MPC) (Heath, 1996),
(Garcia et al., 1989) and its many derivatives
has been implemented on a verity of web forming
processes (Featherstone et al., 2000).

Key issues (Heath, 1996), (Duncan and Bryant,
1997), (Stewart, 2000), (Heaven et al., 1994)
(Bergh and MacGregor, 1987), (Goodwin et al.,
2001a) in this problem are (i) the high degree of
coupling between the actuators responses; i.e. the
system is almost singular and some form of reg-
ularization is needed when evaluating the control
via inversion and (ii) the actuators each have very
low authority; i.e. input amplitude constraints
play a central role in the solution.

10.5 Control over Communication Networks

A topic that brings together many elements of sig-
nal processing, telecommunications and control is
that of control over telecommunication networks.
This is likely to become of increasing practical
importance in the future since it allows industries
to benefit from performing control functions via
a single wireless or hard-wired channel. Already,
significant research has been carried out in this



general area, see (Edited, 2001), (Hristu and Mor-
gansen, 1999), (Ray, 1998), (Nilsson et al., 1998),
(Wong and Brockett, 1997), (Wong and Brock-
ett, 1999), (Walsh et al., 1999), (Nair and Evans,
2000), (Tatikonda et al., 1998), (Hristu, 2000).

Typical constrained inverse questions relate to

(i) Design of the coder/decoder to optimize the
performance in the face of quantization and
channel bandwidth constraints (Gray and
Neuhoff, 1998), (Gray, 1996) (Elia and Mit-
ter, 2001).

(ii) Understanding the fundamental design issues
associated with control over a communica-
tion channel, including an understanding of
the price one pays for various constraints, e.g.
quantization, band limited transmission and
communication delays.

10.6 Filter Design with Quantized Coefficients

Consider the problem of optimal (FIR) filter de-
sign when the filter coefficients are required to
belong to a finite (quantized) set. This problem
typically arises in high speed signal processing
applications so as to facilitate implementation
(McGrath, 2002). Say that the signal model is as
in (32), (33) and we are interested in a particular
(scalar) combination of the states:

z(k) = ftx(k) (69)

We assume that z(k) is estimated by a linear FIR
filter of the form:

ẑ(k) =
k−1∑
j=0

h(k − j)y(j) + gtx̂(0) (70)

where {h(k)} is the filter pulse response. We
assume that the initial state x(0) of the system
satisfies:

E{(x(0) − x̂(0))(x(0) − x̂(0))t} = Po (71)

Substituting (70) into (69) and using (50), (51)

z̃(k) = z(k) − ẑ(k) (72)

= ft(k) −
k−1∑
j=0

h(k − j)(Cx(j) + ν(j)) − gtx̂(0)

(73)

We introduce Lagrangian adjoint variables satis-
fying:

λ(j−1) = Atλ(j)+Ctu(j) ; λ(k−1) = −f (74)

where the input, {u(k)} represents the reverse
time filter coefficients, i.e.

u(j) = h(k − j) (75)

Substituting (74) into (72) and summing gives:

z̃(k) = − x(0)tλ(−1) − gtx̂(0)

+
k−1∑
j=0

λ(j)tω(j) + u(j)ν(j)
(76)

Setting g = −λ(−1); squaring and taking mathe-
matical expectation gives

E{z̃(k)2} =λ(−1)tPoλ(−1)

+
k−1∑
j=0

λ(j)tQλ(j) + u(j)tRu(j)

(77)

Hence the optimal FIR filter can be found by solv-
ing the reverse-time Quadratic Regulator problem
(77), (74). To restrict the FIR coefficients to a
finite (quantized)set, we simply proceed as dis-
cussed in section 5 and 8 by adding appropriate
finite set constraints to the ‘input’ {u(k)}.

11. CONCLUSIONS

This paper has given a brief introduction to the
topic of inverse problems with constraints. We
have argued that this is a central problem in signal
processing, telecommunication and control. An
outline of some of the available tools for solving
these problems has been given as well as some
indication of recent research results. Many open
problems exist in this area and it is suggested that
this could be a fertile area for future research in
systems and control theory. Indeed, it may not be
overly optimistic to predict a sequence of major
breakthroughs which parallel the excitement felt
in the 1960’s and 1980’s with the advent of linear
quadratic theory and the linear infinity norm
problem respectively.
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