
SYSTEMS CONCEPTS IN FIANCIAL PRICING THEORY

David G. Luenberger

Department of Management Science and Engineering
Stanford University

Abstract: Pricing theory is concerned with determining a realistic market-related
price of an asset that is not yet marketed. There are several approaches to this
issue, most of which use systems theory concepts, such as optimization, dynamic
recursion, probability, stochastic process, and control. Pricing theory has therefore
benefited greatly from systems theory. Systems theory can also benefit from pricing
theory, for pricing theory provides critical guidance regarding the proper objective
function for control problems involving random cash flow streams. This paper
outlines these two complementary aspects of pricing theory and systems theory.
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1. INTRODUCTION

The theory of modern finance can be divided into
two questions: pricing and portfolio section. Pric-
ing is the determination of a fair (or reasonable or
predicted) price of an asset. Portfolio design is the
determination of the best portfolio given existing
prices or estimates of future prices. This paper is
primarily concerned with pricing.

Pricing relates to systems theory in two impor-
tant ways. First, systems theory concepts con-
tribute significantly to the development of pricing
theory. Optimization, dynamic recursion, proba-
bility, stochastic process, and control all figure im-
portantly in pricing theory. Second, pricing theory
can fundamentally change the way important sys-
tems and control problems are formulated. Many
optimal control problems have objective functions
that evaluate stochastic cash flow streams. The
objective function for such problems should trans-
late such streams into meaningful economic mea-
sures. From a finance viewpoint, the appropri-
ate measure is the price that would be realized
if the cash flow stream were sold in the financial
market. This price would account for the rela-
tion of the particular cash flow stream to all those
available. This is the price that systems theorists
should most often maximize when treating cash
flow problems. Emphasizing these complementary
roles of systems theory and pricing theory—each
contributing to the other—is the main objective
of this paper.

There are several different approaches to pricing.
The most ambitious is that of equilibrium analy-

sis, where one attempts to determine a complete
spectrum of prices for all assets. This requires a
complete model of the economy.

Most practical methods are incremental in natu-
ral, focusing on a new asset that is introduced into
an existing environment and assuming that prices
of existing assets will not change. The new asset’s
price is determined relative to the existing prices.

The simplest case is when the payoff of the new
asset can be expressed as a linear combination of
the payoff of existing priced assets. To be consis-
tent, the price of the new asset should be the same
linear combination of prices as that of the payoff.
The price is determined linearly.

A generalization of the consistency approach is the
no-arbitrage approach. In this view a new asset
must be priced so that its introduction does not
create an arbitrage opportunity; that is, the pos-
sibility of attaining positive payoff with no chance
of negative payoff and no initial cost. The no-
arbitrage condition is widely accepted as a neces-
sary condition for a new price, but this condition,
by itself, rarely defines a unique price.

Another important approach is the optimization
approach, which determines the threshold price for
an investor to include the asset in an optimal port-
folio. This price is the zero-level price, the price
at which the investor will include the asset at the
zero level.

Consideration of multiple periods introduces im-
portant new considerations because of the possi-
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bility of control. If the asset is a project, for ex-
ample, it can be cancelled if its initial phases are
unsuccessful, it can be expanded if there is good
success, or phases of the project can be delayed.
In practice there are several possible control ac-
tions, and the availability of these actions must be
considered when assessing value.

A most important set of actions are market partic-
ipation actions. The recognition of these market
actions led to the major break-through in think-
ing embodied in the Black–Scholes equation for
pricing stock options, and these considerations
should be blended with the other project control
considerations.

2. LINEARITY AND ARBITRAGE

One tenet of pricing theory is that prices should
be free of arbitrage opportunities. Such opportu-
nities may briefly exist in the real world, but it can
be argued that they are quickly resolved. Pricing
theory deals with an idealized version of financial
markets, where arbitrage is not possible, there are
no transactions fees, securities are infinitely divisi-
ble, and shorting is exactly the opposite of buying.

A consequence of the no-arbitrage requirement is
the rule of linear pricing. Suppose two securities i
and j with payoffs yi and yj (at the end of a pe-
riod) have corresponding prices pi and pj . Then
a security with payoff αyi + βyj must have price
αpi+βpj . This must be true, for otherwise the new
security could be constructed at a cost of αpi+βpj

and if this were less (or greater) than the market
price, one could construct the security and sell (or
buy) it at a profit.

Under fairly broad assumptions, there is a range
of prices for an asset such that introduction of the
asset at a price in that range will not introduce
arbitrage. It is logical, therefore, to require that
the price we assign should lie in this range.

As an example, consider a coin flip asset. The coin
pays 3 units on heads and 0 units on tails. The
range of prices that preclude arbitrage is the open
interval (0, 3). Unfortunately, the no-arbitrage
condition does not provide a specific value.

3. THE SYSTEMS VIEW OF CAPM

Perhaps the most well-known pricing formula is
the Capital Asset Pricing Model (CAPM). It is
used by investors seeking good portfolios, as a way
to price new companies, as a basis for measuring
the performance of mutual funds, and as a way to
price new ventures of all sorts. Its primary les-

son is that risk is not equivalent to volatility, but
rather to market correlation.

The CAPM is derived from Markowitz optimal
portfolio design, and hence CAPM can be con-
sidered to be in the family of optimization ap-
proaches, although as we shall see it is best re-
garded as a consistency result; that is, as a conve-
nient formula for carrying out linear pricing.

To set the framework, assets are represented by
their payoffs which are random variables repre-
senting amounts of cash to be delivered at the end
of the period (say one year). We suppose there is
universe of n such assets with corresponding pay-
offs y1, y2, . . . , yn. These assets have correspond-
ing prices p1, p2, · · · pn.

A portfolio of these assets is a combination of the
individual payoffs, α1y1 + α2y2 + · · ·+ αnyn, with
cost α1p1 +α2p2 + · · ·+αnpn. The total return of
this portfolio is the payoff divided by the cost.

In the Markowitz framework (Markowitz, 1952),
it is assumed that an investor measures perfor-
mance in terms of expected value and standard
deviation of the return. By varying the αi’s is
possible to achieve many different combinations
of expected value and standard deviation of port-
folio return. These can be plotted in a figure to
produce a feasible region as shown in Fig. 1(a).

Fig. 1. Feasible region. (a) With risky assets.
(b) Inclusion of a riskfree asset.



Investors will wish to be on the upper left hand
portion of this curve, termed the efficient frontier.

The picture changes somewhat if a riskfree asset is
added to the collection. This asset has price 1 and
certain payoff R = 1 + rf . This asset can be com-
bined with other assets in various combinations to
form portfolios that broaden the feasible region.
Because the riskfree asset has zero variance and
zero correlation with other assets, a fifty-fifty mix
of the riskfree asset with a feasible asset produces a
portfolio with an expected return halfway between
the expected returns of the two components and
a standard deviation that is half that of the risky
component. This argument can be generalized to
arbitrary weighted combinations with the result
that any straight line from the riskfree point to a
point in the original feasible region can be added
to the feasible region, producing the triangular-
shaped region shown in Fig. 1(b). There is now a
single efficient portfolio M of risky assets with pay-
off at the point where a line from the riskfree rate
rf is tangent to the old feasible region. The payoff
of this efficient payoff is denoted yM and termed
the Markowitz portfolio. Investors will seek to be
somewhere on the efficient frontier defined by the
line through the riskfree point and the point cor-
responding to yM .

We are not so interested in the Markowitz problem
for the sake of determining a portfolio but rather
as a basis for pricing.

The necessary conditions for determining the effi-
cient point can be reduced to n equations for the
n unknowns α1, α2, . . . αn. These n equations in-
volve the n prices. If we assume that we know the
αi’s we can regard these n equations as equations
for the pi’s. This is the essence of the optimization
approach to pricing. The necessary conditions are
turned around. Instead of equations for the αi’s
given the prices, the same conditions are regarded
as equations for the pi’s given the optimal αi’s.
For the Markowitz problem the necessary condi-
tions when turned around yield the CAPM for-
mulas (Sharpe, 1964) for the pi’s

pi =
1
R

[
E[yi]−cov(yi, yM )(yM−pMR)/σ2

M

]
, (1)

where yM is payoff of the Markowitz portfolio, pM

is its price (usually normalized to pM = 1), and
σ2

M is the variance of yM .

The important lesson from this formula is that risk
is measured by the coefficient βi,M defined as

βi,M = cov(yi, yM )/σ2
M ,

which is a normalized version of the covariance of
the asset’s payoff with the efficient portfolio. It is

not the variance of the asset, but only its covari-
ance with the efficient risky asset that matters.
If the asset has zero covariance with the efficient
portfolio, then no matter what its variance, its
price is simply pi = E[yi]/R.

3.1 The CAPM and Other Assets

The formula (1) is linear in yi. Hence it can
be applied to any linear combination of the yi’s
to obtain the corresponding price. A general
y =

∑n
i=1 aiyi can be priced consistently with

the other assets by substituting y for yi in (1).

Sharpe (1964) observed that if all investors se-
lect portfolios on the efficient frontier, then all in-
vestors will purchase the same bundle of risky as-
sets, augmented by various amounts of the riskfree
asset. And, if everyone purchases the same bundle
of risky assets, this bundle must be proportional
to the market portfolio. Under this assumption,
yM becomes the market portfolio. Therefore, in
practice it is not necessary to compute yM , for it
can be observed as the amounts of each security
outstanding.

The pricing formula (1) is a tautology; it simply
recovers the prices pi that were originally used to
determine yM . It provides no new information. It
is a convenient way to carry out linear pricing—to
find the price of any marketed asset or combina-
tion of marketed assets by using only its expected
value and covariance with the Markowitz portfo-
lio. It is quite convenient, since given a payoff
y it is not necessary to explicitly determine the
linear combination of y1, y2, . . . yn equal to y and
then combine the pi’s correspondingly. The pric-
ing formula does all that automatically once yM is
known.

In practice, the CAPM (usually with yM taken as
the market portfolio) is used to price new assets,
assets whose payoffs are not in the span of the
original payoffs. There is no actual justification
for this, since the formula was developed only for
prices of the original yi’s and their linear combi-
nations. Nevertheless for an asset with payoff y, a
CAPM price is defined as

py =
1
R

[
E[y]− cov(y, yM )(yM − pMR)/σ2

M

]
. (2)

Let us apply this formula to the coin flip example.
If we assume that the coin flip asset is not part of
the original set of marketed assets, then its pay-
off is uncorrelated with the Markowitz portfolio.
Hence the price is

p =
1
R

E(y).
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If, because the time to payoff is short, we take
R = 1, then the CAPM price of the coin flip is the
expected value, 1.5 units.

The practice of applying CAPM to assets outside
its original region of derivation is so common, it
is natural to ask just what price it yields. We
answer this in the next section.

4. PROJECTION PRICING

From a systems perspective, it is natural to regard
the pricing problem in a vector space. We regard
y1, y2, . . . , yn and the new payoff y as n + 1 vec-
tors in an inner product space. The first n vectors
define a linear subspace M of this space. The in-
ner product is (yi|yj) = E(yiyj). The norm (or
distance) of a vector is ‖y‖ =

√
(y|y) =

√
E[y2].

We say y is orthogonal to M if (y|m) = 0 for all
m ∈ M .

A natural way to price the payoff y is by projec-
tion. Specifically, we project the payoff y onto
the subspace M , obtaining a vector m0 ∈ M and
then assign a price to y equal to the price of m0

which can be found by linear pricing from the n
marketed assets. This approach is based on the
classical projection theorem, which is a familiar
tool of systems theory (Luenberger, 1969).

Theorem 1 Let H be a Hilbert space and M a
closed subspace of H. Let y ∈ H. Then there is an
m0 ∈ M such that ‖y − m0‖ ≤ ‖y − m‖ for all
m ∈ M . Furthermore, y−m0 is orthogonal to M .
Conversely, if there is an m0 ∈ M such that y−m0

is orthogonal to M , then ‖y − m0‖ ≤ ‖y − m‖ for
all m ∈ M .

This theorem is illustrated in Fig. 2.

Once the projection m0 of a payoff y onto the sub-
space M of marketed payoffs is found, the price
pm0 of m0 can found by linear pricing in M . We
the set py = pm0 to define the projection price of
y.

This procedure may seem somewhat arbitrary, but
it has the advantage of simplicity and uniqueness.
One of the most important properties of this pro-
jection method, however, is that it duplicates the
CAPM. The CAPM price (2) with yM equal to
the Markowitz portfolio is equal to the projection
price. See (Luenberger, 2001).

Fig. 2. The projection theorem.

One difference between the projection price and
the Markowitz (or equivalently CAPM) price
is that the efficient portfolio yM used in the
Markowitz formula (1) may not exist. Yet, the
projection price itself always exists, as guaranteed
by the projection theorem. The projection theo-
rem therefore suggests that there may be an alter-
native formula that does not share the potential
nonexistence difficulty of the standard Markowitz
or CAPM formula.

5. CORRELATION PRICING

One way to calculate the projection price is to use
a dual formulation of the projection theorem.

Theorem 2 Let H be a Hilbert Space and M a
closed subspace of H. Let y ∈H. Then there is an
m′ ∈ M with ‖m′‖ = 1 such that (y|m′) ≥ (y|m)
for all m ∈ M with ‖m‖ = 1. Furthermore, if the
projection m0 of y is nonzero, then m′ is unique
and a positive multiple of m0.

The theorem is illustrated in Fig. 3.

Fig. 3. The dual projection theorem.

An application of this theorem to pricing is to find
the projection of y onto M by finding the asset in
M making the smallest angle with y and then pro-
jecting y onto that. This leads to the alternative
price formula

p =
1
R

[
E[y] − cov(y, yM )[yM − pMR)/σ2

m

]
(3)



where now yM is an asset most correlated with y.
Such a yM is defined only to within a scale factor
and an additive constant.

This alternative formula (Luenberger, 2002a),
termed the Correlation Pricing Formula (CPF), is
a very practical form of the projection pricing. It
can be viewed as a rigorous version of the common
practice of pricing assets by finding similar assets
that are already priced. For example, in pricing a
house, one looks at “comparables”, similar houses
in the same neighborhood that have sold recently,
in order to judge the price.

Note, for example, that if y ∈ M then we may take
yM = y and the formula (3) reduces to p = py.

Let us apply this formula to the coin flip problem.
A most-correlated asset is the riskfree asset, and
the covariance of this with the coin flip is zero.
Hence, the formula reduces to

p =
1
R

E[y] = 1.5,

as in the CAPM.

This form of the projection pricing formula has
the advantage that it always exists (unlike the
standard CAPM). But its greatest advantage is
that it is not necessary to relate the asset to the
market as a whole, but rather to a most-correlated
marketed asset.

6. ZERO-LEVEL PRICING

The projection price has the disadvantage that it
seems somewhat arbitrary, in that it is not directly
related to market activity or to individual choice.
There is an indirect relation, since the projection
price is identical to the CAPM price which is based
on mean–variance investor choice. However, the
mean–variance framework itself seems somewhat
arbitrary. One might expect a sophisticated the-
ory of pricing to be based on a sophisticated view
of investor choice. This leads us to consider an
expected utility version of the investor’s portfolio
problem.

We employ the same framework as in the earlier
sections with respect to the nature of the available
assets. Now, however, we consider an investor who
has a utility function U for final wealth and seeks
to maximize the expected value of this function.
The investor’s problem is

maxα1,α2,...αn E[U(y0)] (4)
subject to α1y1 + α2y2 + · · · + αnyn = y0

α1p1 + α2p2 + · · · + αnpn = W.

The necessary conditions for this problem are eas-
ily found to be

E[U ′(y0)yi] = λpi for i = 1, 2, . . . n (5)

for some λ > 0. Note that this is a linear pricing
formula since

pi = E[U ′(y0)yi]/λ.

If there is a riskfree asset with return R among
the marketed assets (as we shall always assume),
then the necessary condition (5) for it implies

E[U ′(y0)]R = λ. (6)

Hence we may write (5) as

pi =
E[U ′(y0)yi]
R E[U ′(y0)]

for i = 1, 2, . . . n. (7)

Now suppose a new asset with payoff x outside
M is introduced. Suppose also that a price px is
assigned to this payoff. The investor may wish
to modify his or her portfolio to take advantage
of this new opportunity. The degree of modifica-
tion will, of course, depend on the price px. If
it low, the investor will want to include a large
fraction of this asset in the portfolio; if it is high,
the investor will want to short the asset. In fact,
some price assignments may lead to arbitrage pos-
sibilities. However, under rather mild conditions,
there is a unique zero-level price p0

x such that the
investor will find that it is not advantageous to
include the new asset in the portfolio in either a
positive or negative amount. Zero is the optimal
level. This price is called the zero-level price. See
(Luenberger, 2002b).

This price is easily computed to be

p0
x =

E[U ′(y0)x]
R E[U ′(y0)

(8)

since it is the same optimization problem as be-
fore, and has the same optimal portfolio y0.

It may turn out that different investors have differ-
ent zero-level prices. This is fine when considering
a particular investor’s situation. The zero-level
price defines a threshold for that investor. Only
if the price is lower than that threshold should
the investor actually consider purchasing a (pos-
itive) amount of the asset. Price nonuniqueness,
however, is not desirable as a price assignment
methodology.



6.1 Universal Zero-Level Prices

In some situations the zero-level price of an asset
is actually independent of investor’s utility and
wealth. If this is the case, the zero-level price is
said to be a universal zero-level price. One ob-
vious case is when the asset is already marketed;
that is, its payoff is in the subspace M . The zero-
level price must then agree with the market price,
or an arbitrage opportunity would exist. Hence,
the zero-level price must be fixed at the linearly
defined price, independent of U and W .

As another example, suppose x is the coin flip pay-
off. We have

p =
E[U ′(y0)x]
R E[U ′(y0)]

.

Since the payoff of the coin flip is independent of
y0 the numerator can be written as E[U ′(y0)x] =
E[U ′(y0)]E[x]. Hence again

p =
1
R

E[y] = 1.5,

equal to the CAPM or projection price.

This example generalizes. If the payoff of the asset
to be priced is independent of all marketed assets,
the zero-level price is universal.

Another case is where all asset returns are dis-
tributed according to a joint normal distribution.
In this case, y can be written as y = yL+yN where
yL is a linear combination of y1, y2, . . . yn and yN

is independent of the yi’s. Hence, we may write

p = pL +
1
R

E[yN ],

where pL is the price of yL (which is found by lin-
ear pricing from the prices of the yi’s). This p is
independent of U and W , and is thus a universal
zero-level price.

It can be shown that in these cases, where the
zero-level price is universal, that the universal
zero-level price is equal to the projection price, as
it is for the coin flip example.

7. SIMPLE CONTROL

Suppose that x represents the payoff of a project
that we can manage. The nature of x may then de-
pend on the management (or control) actions that
we take. These actions may shape the probability
distribution of x, increasing the mean, narrowing
the variance, or chopping off regions. The payoff
x is really a random function x(u), where u is a
control action. We wish to determine the optimal
u.

This kind of problem occurs often in practice, and
engineers deal with it frequently. It is an integral
part of systems theory. The standard way to treat
the problem is to define an objective function, say
J(x(u)) and maximize its expected value. That is,
select u to maximize E[J(x(u))].

This approach, although common, ignores the na-
ture of the market in which the project is em-
bedded. An alternative, is to recognize that for
each u there is a zero-level price p0(u) associated
with x(u). This price accounts for both the market
and the utility function of the individual. That is,
the problem becomes maximization of p0(u) with
respect to u. The problem can then be formu-
lated as maximization of the zero-level price. The
zero-level price is appropriate for projects that
are small or medium-sized relative to the size of
the optimizing unit. Typically, this means that
projects of up to 15% of a firm’s revenue or an in-
dividual’s wealth can be treated this way. Really
large projects require additional considerations.

If the project payoff happens to be independent
of the market for every value of u, the zero-level
price is the discounted expected value. Hence,
the problem becomes maximize E[x(u)]/R with
respect to u, which is a common formulation of
the problem. If the project is not independent of
the market, the correct zero-level price should be
used as the objective.

8. MULTIPERIOD DERIVATIVE PRICING

The concepts presented so far can be extended
to multiperiod situations. As before, the simplest
case is that of pricing an asset that is within the
span of the original assets. Such an asset is priced
by linearity.

As simple as that sounds, the application of lin-
ear pricing in a multiperiod setting is subtle, and
its full resolution represents a most important ad-
vance in finance, as embodied in the Black–Scholes
equation for derivative securities (Black and Sc-
holes, 1973). The reason that the issue is subtle is
that the subspace of payoffs generated by n assets
is not merely n-dimensional as it is in the single-
period setting; it is much larger.

This expansion of dimension can be illustrated by
a simple finite-state model. Suppose there are two
assets. One is a stock that at the end of each pe-
riod either goes up or down, each with probability
.5. If it goes up the return is 2 if it goes down
the return is 1/2. There is also a riskfree asset (a
bond) with total return of 1 each period. The total
return of the stock over two periods takes on three



possible values: 4, 1, 1/4, corresponding to either:
two ups, an up and a down, or two downs. The
three possible conditions of ups and downs define
three possible states of the system after two peri-
ods. The riskfree asset always has a return of 1,
no matter what the state: that is, its state returns
are 1, 1, 1.

Suppose another asset has a payoff that depends
on these three states. Perhaps it is an option on
the stock and pays 9, 0, 0. According to the stan-
dard viewpoint we can price this uniquely only if
it can be expressed as a linear combination of the
stock and the bond. In the example given, this
cannot be done, for there is no way to combine (4,
1, 1/4) and (1, 1, 1) to obtain (9, 0, 0).

However, additional state outcomes can be gen-
erated by the stock and bond by changing the
weights at the end of each period. For example,
there is a strategy for attaining (9, 0, 0). Specifi-
cally, at time 0 buy 2 units of the stock and short
1 unit of the bond, for a total cost of 1 unit. At
the end of the first period there are two possible
states corresponding to an up or down movement
of the stock. The portfolio is worth 3 or 0, respec-
tively. If we are in the up state with 3 units, we
readjust the holdings to 6 units of the stock and
−3 units of the bond. The cost of this new port-
folio is 3, so since we already have 3 in this state,
this is a no-cost adjustment. If we are in the down
state with 0 units. We take no further positions.
At the end of the second period, we will have a
total of 9 units if we are in the up up state, and
0 units in the up down or down down state. The
final payoff by state is therefore 9, 0, 0, which is
what we sought. The opportunity for trading ex-
panded the span of the the marketed assets. We
conclude that the price of the payoff (9, 0, 0) is 1
since that was the initial cost of the strategy that
attained it.

As mentioned earlier, the most remarkable result
of this viewpoint is the theory of option pricing ini-
tiated by the Black–Scholes theory. In continuous
time, when assets are governed by Ito processes,
it is possible to replicate any function of the mar-
keted payoffs by suitable trading (control) at every
instant.

In the Black–Scholes framework a stock price x(t)
is governed by the Ito process

dx = µxdt + σx dz, (9)

where z is a standardized Wiener process (with
mean zero and variance 1). There is also a bond
with price y satisfying

dy = ry dt.

A derivative of x has a payoff at time T that is an
explicit function of x(T ); say F (x(T ). For exam-
ple, it may be the payoff of an option on x(T ). The
value of the derivative at time t ≤ T is defined to
be V (x(t), t). It must satisfy the boundary condi-
tion V (x(T ), T ) = F (x(T ) and the Black–Scholes
equation

rV (x, t) = Vt(x, t)+Vx(x, t)rx(t)+ 1
2Vxx(x, t)x(t)2σ2.

(10)
.

8. FULL CONTROL

The theory of derivatives represents a major step
in the theory of pricing. The theory has been ap-
plied in many areas, including interest rate deriva-
tives, credit risk securities, and real options. How-
ever, it cannot price assets that are multiperiod
but not derivative of a priced asset.

Consider, for example, a project within a techni-
cal firm to develop a new product. The project’s
payoff will depend on consumer acceptance of the
product, its price, and on the general market con-
ditions. This payoff is not a derivative of a secu-
rity, and hence the Black–Scholes methodology is
not applicable. An alternative is to use projection
pricing.

Suppose there are n assets with prices that follow
processes of the form

xi(k + 1) = aixi(k) + wi(k)xi(k)

for i = 1, 2, . . . n. There is also a process defined
by the state x0 that satisfies

x0(k + 1) = f0(x0(k), w0(k), u(k))

where u(k) is a control. The wi(k)’s are random,
and wi(k) is uncorrelated with wj(l) for all j and
all l �= k.

The xi’s for i = 1, 2, . . . n are prices of marketed
assets and they can be combined into a portfo-
lio that can be modified each period. The special
variable x0 is not a price. It can be observed but
not traded. Its value at t = T determines a pay-
off F (x0(T )). For example, x0 may represent the
progress of a project that is subject to control u.

At each period k, let yM denote the payoff of the
Markowitz portfolio. We wish to maximize the
projection price of the project by selection of a
suitable control strategy. We may do this by com-
bining dynamic programming with dynamic pro-
jection pricing.



The recursive process is

V (x0(k), k) =
1
R

max
u(k)

[
E[V (x0(k + 1), k + 1)]

−cov(V (x0(k + 1), k + 1), yM )(yM − pMR)/σ2
M

]
,

(11)
where V (x(T ), T ) = F (x(T )).

If the project is uncorrelated with all assets in the
market, then the value V (x0(0), 0) computed by
(11) is the maximum discounted expected value
of the project payoff. In general, however, the
result is the maximum projection price. In the
case of normal distributions and suitable linearity,
the value will be the maximum universal zero-level
price.

The recursion (11) is only a one-dimensional re-
cursion, even though implicitly there are n + 1
variables.

This approach can be extended to projects with
higher-order dynamics and to marketed assets of
more complex form.

The approach generalizes to continuous-time as
well, where even stronger results apply. The ba-
sis for this extension is a generalization of the
Black–Scholes equation that yields the universal
zero-level price even when the payoff to be priced
is not a derivative. In this framework, there are
n marketed assets following Ito processes of the
form

dxi = µixi dt + σixi dzi

and a special process, that can be observed but
cannot be traded, governed by

dx0 = µ0x0 dt + σ0x0 dz0.

The payoff is a function F (x0(T )). It can be
shown that the zero-level price of this payoff fol-
lows an extended Black–Scholes equation (Luen-
berger, 2002c).

This general approach melds modern finance with
control theory, so that control theorists can formu-
late important problems in a manner consistent

with finance concepts.

9. FUTURE DIRECTIONS

A great deal remains to be done in pricing theory,
and especially its interplay with systems method-
ology. The heavy computational requirements
of complex models within the framework of a
high-dimensional market present an important
challenge that may be met with continued coop-
eration between the finance and systems fields.
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