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Abstract: This paper describes four methods for robot trajectory control. These methods
are a standard PID controller, a Computed Torque Method (CTM), a neural network
based inverse controller and a neural network based Internal Model Controller (IMC).
The IMC is investigated as an alternative to the basic inverse control scheme that is
difficult to implement. The results presented show the superior ability of the proposed
neural network based IMC scheme at adapting to changes in the dynamic parameters of
the robot.  Copyright © 2002 IFAC
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1. INTRODUCTION

Robots are systems with highly coupled non-linear
dynamics and parametric uncertainties. If a robot's
characteristics are known, computed torque and non-
linear decoupling controllers can be used to achieve
satisfactory trajectory tracking performance
(Arimoto and Miyazaki, 1984; Kreutz, 1989). The
chief drawback of these methods, however, arises
from the fact that they rely on exact cancellation of
non-linear terms in order to obtain linear input-
output behaviour.

To improve the performance of robots in uncertain
environments, considerable research has been
focused on developing advanced controllers in recent
years and two main design techniques have emerged,
namely robust control and adaptive control.

The ability of Neural Networks (NNs) to represent
non-linear relations leads to the idea of using a NN
directly in a model-based control strategy. This is
due to the possibility of training NNs to learn both a
system's input-output relationship and its
corresponding inverse relationship. A suitable
control strategy, which directly incorporates the plant
model, is provided by the IMC method (Garcia and
Morari, 1982). Recently, it has been shown that the

IMC method is a simple and effective technique for
designing the underlying control law in a new
approach to adaptive robust control when the plant is
stable (Lee et al., 1993). The applicability of IMC to
the control of non-linear systems was demonstrated
by Economou et al. (1986). The inverse of the non-
linear operator model of the plant was shown to play
a crucial role in the implementation of the non-linear
IMC method. Economou et al. studied analytical and
numerical methods for the construction of the
required non-linear operator inverses. In the present
work, NNs are utilised for the construction of plant
models and their inverses and it is intended for them
to be used directly within the IMC method.

The idea of employing NNs in the non-linear IMC
method has been considered by Bhat and McAvoy
(1990). A technique, using NNs directly, was
proposed for the adaptive control of non-linear
systems by Hunt and Sbarbaro (1991). The control
structure adopted was the IMC method. This
structure was used to incorporate network modelling
of the plant and its inverse directly within the control
strategy.

The realisation of an IMC using NNs is
straightforward: the system’s dynamics and the
controller are simply implemented by means of NN
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models (Pham and Yildirim, 1999). One of the main
problems in robot control is to determine the
sequence of joint inputs required to cause the end-
effector to execute a given motion. The joint inputs
are normally joint forces and torques. The required
motion is typically specified either as a series of end-
effector positions and orientations or as a continuous
path.

Usually, to design a controller for a complex plant
such as a robot, it is necessary to have detailed
knowledge about its structure. This applies to
conventional general-purpose Proportional-Integral-
Derivative (PID) controllers and specialist model-
based controllers such as the computed-torque
controller proposed for some robot systems (Armito
and Miyazaki, 1984). However, recently, neural-
network-based control approaches have been
developed that do not require much prior knowledge
about the plant to be controlled. This is because
neural networks, which are computational models of
the brain, are able to learn their control task
automatically. For example, Kawato et al. (1988) and
Psaltis et al. (1987) have presented control
architectures using neural networks that are efficient
at learning non-linear motion control tasks from
input and output data obtained from the plant. Pham
and Yildirim (1999) have described the training of
neural networks to model the forward and inverse
dynamics of plants and have applied the trained
neural networks to the control of a planar robot. The
proposed control scheme is able to adapt to changes
in the operating conditions and dynamics parameters
of the robot. Ozaki et al. (1991) have presented a
non-linear compensator for robot control using
neural networks that incorporate the concepts of the
computed-torque method. The authors have also
explained the notion of model learning and
demonstrated its usefulness in simulation. Another
example of work in the neural control of robots is
that of Khemaissia and Morris (1993) who have
described a new system identification and adaptive
control scheme for robotic devices based on the non-
linear functional properties of neural networks.

In most neural control schemes developed so far, the
neural network is employed to obtain a model of the
dynamics or inverse dynamics of the plant. The
neural model is then utilised to replace a
mathematical model, supplement a conventional
controller or act as the controller itself. A popular
neural network structure is the feedforward multi-
layered type. However, this type of network is more
naturally suited to static mapping than dynamic
modelling and thus is not ideal for control
applications. To enable a feedforward network to
have a dynamic memory as required in such
applications, it is usually fitted with tapped delay
lines, which increases the number of inputs and
makes training more difficult (Pham and Liu, 1997).

This paper compares four methods of trajectory
control that were applied to a simulated SCARA arm
robot (Pham and Yildirim, 1999).

In practice, some parameters are not known
accurately and the dynamic model of the robot is
further complicated by the presence of factors like
clearances in bearings and backlash in the
transmission system. Note that although a robot
dynamic equation is non-linear, it also incorporates
linear terms. This motivates the idea of using a
hybrid neural network, as discussed in the Appendix,
with both linear and non-linear neurons to represent
the robot dynamics.

2. CONTROL METHODS

For the SCARA arm robot (Pham and Yildirim,
1999), the distance between the axes of joints 1 and 2
is l1 and the distance between the concentrated
payload m2 and the axis of joint 2 is l2. The angles of
rotation of the actuators are ϕ1 and ϕ2, respectively.
The dynamics equations of the robot arm can be
written as follows (Pham and Yildirim, 1999):

),(),()( ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕττττ ���� FCM ++= (1)

where ττττ=[τ1 τ2]T, ϕϕϕϕ=[ϕ1 ϕ2]T, ϕϕϕϕ� and ϕϕϕϕ�� are the first
and second time derivatives of ϕϕϕϕ, M(ϕϕϕϕ) is the
inertiamatrix of the robot, C(ϕϕϕϕ, ϕϕϕϕ� ) is a 2×1 vector of
centrifugal and Coriolis terms and F(ϕϕϕϕ, ϕϕϕϕ� ) is a 2×1
vector of viscous and Coulomb friction terms.

2.1 PID control.

PID control is perhaps the most widely used control
method. It can provide a fast response, good system
stability and small steady-state errors in a linear
system with known parameters.

As its name implies, a PID controller consists of
three parts: Proportional, Integral and Derivative
Control. Assuming that each joint is completely
decoupled and controlled independently from other
joints, the control input ττττ(t) is given by:

ττττ(t)= KP e(t)+ KI �e(t)dt + KD 
d t

dt
e( )

(2)

In equation (2), e(t) is the control error

e(t)= ϕϕϕϕd(t)-ϕϕϕϕ(t) (3)

where ϕϕϕϕd(t) is the desired robot joint position vector
[ϕd1 ϕd2]T and ϕϕϕϕ(t) is the current measured joint
position vector [ϕ1 ϕ2]T. KP is called the proportional
gain, KI the integral gain and KD the derivative gain,
all of which are n×n diagonal matrices where n=2 is
the number of joints. PID controllers for articulated
robots face two main difficulties, non-linearity and
cross-coupling [9].

2.2  Computed Torque control.



Due to the aforementioned problems of non-linearity
and cross-coupling in robot control, much of linear
control theory is not directly applicable. Computed-
torque (CT) control schemes based on either the
Lagrange-Euler formulation or the Newton-Euler
formulation have been proposed (Figure 1).

Fig. 1. Configuration of computed torque (CT)
control scheme

For a general CT scheme using the Lagrange-Euler
formulation, the control input is
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(4)

where )(ˆ ϕϕϕϕM  is an n×n inertia matrix, )(ˆ ϕϕϕϕϕ,ϕ,ϕ,ϕ, �C  is
an n×1 vector of centrifugal and Coriolis terms and

),(ˆ ϕϕϕϕϕϕϕϕ �F  is an n×1 vector of friction terms. M̂ , Ĉ
and F̂  are models of M, C and F as given in (Pham
and Yildirim, 1999).

If these models exactly match the actual system, the
error is governed by

0PD =++ eKeKe ��� (5)

Then, by choosing KP and KD such that Equation (5)
has negative real roots, e can be made to approach
zero asymptotically. When the gain matrices are
chosen to be diagonal such that Pkk

2
Dkk K4K =  for

all k, critical damping is achieved for the error
dynamics. However, due to modelling inaccuracies,
mismatched terms appear on the right-hand side of
(5).

The model-based computed-torque approach works
well and can give better control than a simple PID
scheme when an accurate dynamics model of the
robot is available. However, in practical situations, it
is very difficult, if not impossible, for the parameters
associated with the robot model to be determined
exactly. Moreover, during operation, the dynamics of
a robot may change significantly and rapidly. Under
such circumstances, the trajectory tracking
performance when using the computed-torque
control method significantly degrades due to the
inaccuracy of the dynamic model for computing the
control torques.
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Fig. 2. Proposed inverse control system

2.3  Inverse Model Control

As shown in Figure 2, the proposed control system
includes a feedforward controller (INN1) which is a
copy of the neural network (INN2) used to learn the
inverse dynamics of the plant (that is INN2 has to
learn to produce the torque required to generate given
joint rotations. INN1 and INN2 are recurrent hybrid
neural networks as detailed below. INN2 is trained
on-line during control to give the system the ability
to adapt to change. In addition, there is a simple
conventional feedback controller to enable the
system to be controlled before INN1 and INN2 are
ready.

From Figure 2, the control input to the robot is given
by

ττττ= ττττN + ττττP (6)

where ττττN is the output of INN1 and ττττP the output of
the feedback controller. The latter is taken to be a
simple proportional controller with gain Kf and thus

ττττP = Kf e (7)

In addition to the control loop formed by the neural
and P controllers, the system also includes an inner-
loop PID controller that acts directly on the joint
motors to provide stable speed control.

2.4  Internal Model Control (IMC)

A two-step procedure for using a neural network
directly within the IMC structure is proposed. The
first step involves training a network to represent the
robot’s forward dynamics. This network is used as a
model of the robot in the IMC structure (Figure 3).
The minor-loop controller, which is not shown, is
also employed to simplify the design of the overall
controller and obtain more stable control (Pham and
Yildirim, 2000). The error signal, e, is used to adjust
the weights of the neural controller with sensitivity
information obtained for this purpose from the neural
model of the robot. Let ϕdi(t) and ϕi(t) be the desired
and actual responses of joint i of  the robot. The
weights of the proposed neural controller are
adjusted using the BP algorithm as follows:
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where Wkh(t) is the weight of the connection between
neurons h and k in the controller and E(t)=
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where miϕ is the ith output of neural model, can be
employed once the neural model of the robot is well
trained. Therefore, the error signal can be
backpropagated to the controller via the neural
model. The feedback and the weights of the
connections between the output and hidden layers
can be upgraded by applying the BP algorithm [11].
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Fig.3 IMC system

3. SIMULATION RESULTS

The robot chosen to be controlled in this study was a
planar 2-degree-of freedom SCARA arm robot
(Pham and Yildirim, 1999). The results of the
simulated implementation of the four methods are
given below.

Figures 4 and 5, respectively, show the trajectories
produced using a PID controller and a CT controller
tuned for a system with a payload of 10 kg but
handling an actual load of 30 kg. The P and D gains
of the CT controller were KP=diag[850 850] and
KD=diag[150 150]. The gains of the PID controller
were KP=diag[150 150], KI=diag[10 10] and
KD=diag[1 1].

To test the ability of the neural network based
inverse model control system  to adapt to different
robot payloads, the value of m2 was increased to 30
kg following training on the 10 kg payload. The
performance of the system was computed on the
second attempt at following the specified trajectory.
The actual trajectories of the robot end effector
superimposed on the specified trajectory are plotted
in Figure 6.
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Fig. 4. Desired and actual trajectories of the
endeffector after dynamics change(using PID
controller)
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Fig. 5. Desired and actual trajectories of the
endeffector after dynamics change(using CT
controller)
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Fig. 6. Desired and actual trajectories of the end
effector after dynamics change(using inverse
control system)
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Fig. 7. Desired and actual trajectories of the end
effector after dynamics change(using IMC)
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Figure 8. Desired and actual trajectories of end
effector (using FNN, IMC)

In the neural network based  IMC, the recurrent
hybrid network (RHN) structure adopted was that of
the neural controllers and neural model. The neural
controller was trained when the robot had a payload
of 10 kg. To demonstrate the adaptability of the
proposed control scheme, the payload was suddenly
changed from 10 kg to 30 kg. The result obtained is
shown in Figure 7. Also, FNN was employed as a
neural controller and neural model. Figure 8 shows
the results of the desired and actual trajectories of the
end effector using FNN.

This is confirmed by inspecting Table 1 which
presents the RMS error values for the different types
of controller.

Controller RMS error
(before dynamic

change)

RMS error
(after dynamic

change)
PID 0.00592 0.00488

CTM 0.00493 0.0510
Inverse Model

Control
0.00211 0.00617

IMC (RHN) 0.0019361 0.005141
IMC (FNN) 0.002747 0.04882

Table 1. RMS errors of different controllers

4. DISCUSSION

From the results obtained, it can be seen that the IMC
system employing a RHN controller produced the
best performance while the inverse control system
yielded  poor control. A reason for the strong
performance of the RHN-based IMC system was the
inclusion of both linear and non-linear neurons in a
RHN. This facilitated the training of the controller
because the linear neurons could readily learn the
linear part of the robot dynamics and the non-linear
neurons, the non-linear part.

5. CONCLUSION

Four types of control methods have been presented in
this paper. It is well known that inverse model
control is difficult to implement due to problems with
obtaining an accurate model of the plant to be
controlled. The use of a neural network to learn the
plant inverse model avoids the need for a priori
knowledge or assumptions about the plant. The
proposed recurrent hybrid neural network has two
advantages: the recurrent connections provide an
inherent dynamic memory which facilitates
modelling and the hybrid hidden layer enables real
systems comprising linear and non-linear parts to be
modelled accurately. The results of applying the
recurrent hybrid network to the simulated control of
the trajectory of a planar robot arm have
demonstrated its superiority over feedforward and
purely linear or non-linear networks. The proposed
neural control scheme has also been shown to
perform better than the conventional computed-
torque and PID schemes.

6. APPENDIX: PROPOSED RECURRENT
HYBRID NETWORKS

Fig. A.1 shows the structure of the proposed RHN. In
addition to the input and hidden feedforward
connections, there are also feedback connections
from the output layer to the hidden layer and self
feedback connections in the hidden layer (Pham and
Yildirim, 2000).

At a given discrete time t, let u(t) be the input to a
RHN, y(t), the output of the network, x1(t) the output
of the linear part of the hidden layer and x2(t) the
output of the non-linear part of the hidden layer.

The operation of the network is summarised by the
following equations:

x1(t+1)=WI1 u(t+1)+β x1(t)+αJ1y(t) (A.1)

x2(t+1)=F{WI2 u(t+1)+β x2(t)+αJ2y(t)} (A.2)

y(t+1)=WH1 x1(t+1) + WH2 x2(t+1) (A.3)

where WI1 is the vector of weights of the connections
between the input layer and the linear hidden layer,
WI2 is the vector of weights of the connections



between the input layer and the non-linear hidden
layer, WH1 is the vector of weights of the
connections between the linear hidden layer and the
output layer, WH2 is the vector of weights of the
connections between the non-linear hidden layer and
the output layer, F{}is the activation function of
neurons in the non-linear hidden layer and α and β
are the weights of the self-feedback and output
feedback connections. J1 and J2 are respectively
nH1×nO and nH2×nO matrices with all elements equal
to 1, where nH1 and nH2 are the numbers of linear and
non-linear hidden neurons, and nO, the number of
output neurons.

If only linear activation is adopted for the hidden
neurons, the above equations simplify to:

y(t+1)= WH1 x(t+1) (A.4)

x(t+1)= WI1 u(t+1)+βx(t)+αJ1 y(t) (A.5)

Replacing y(t+1) by WH1 x(t+1) in equation (A.5)
gives

x(t+1)= (β I+α J1 WH1)x(t)+WI1 u(t+1) (A.6)

where I is a nH1×nH1 identity matrix. Equation(A.6) is
of the form

x(t+1)= A x(t)+B u(t+1) (A.7)

where A= βI+αJWH1 and B= WI1. Equation (A.7)
represents the state equation of a linear system of
which x is the state vector. The elements of A and B
can be adjusted through training so that any arbitrary
linear system of order nH1 can be modelled by the
given network. When non-linear neurons are
adopted, this gives the network the ability to perform
non-linear dynamic mapping and thus model non-
linear dynamic systems. The existence in the RHN of
a hidden layer with both linear and non-linear
neurons facilitates the modelling of practical non-
linear systems comprising linear and non-linear
parts. The inverse dynamics equation of the robot
includes both linear terms and non-linear terms.

Figure A.1. Block diagram of recurrent hybrid
network

In this work, the values of the weights of the
recurrent connections, α and β, are fixed. This means
only the weights of the feedforward connections, WIi
and WHj, need to be adjusted and thus the standard
backpropagation algorithm can be employed to train
the neural internal model.
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