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Abstract: Autonomous localisation and mapping requires a vehicle to start in an
unknown location in an unknown environment and then to incrementally build
a map of landmarks present in this environment while simultaneously using this
map to compute absolute vehicle location. The theoretical basis of the solution to
this problem, known as Simultaneous Localisation and Mapping (SLAM), is now
well understood. A number of approaches to SLAM have appeared in the recent
literature. This paper presents results of deployment of the algorithm undertaken
at the Australian Centre for Field Robotics in a variety of field applications. The
algorithm has been used in indoor environments, using a high speed land vehicle
travelling in a park and on a submersible vehicle.
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1. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM)
is the process of concurrently building a feature
based map of the environment and using this map
to obtain estimates of the location of the vehicle.
The theoretical basis of the solution to this problem
is now well understood. In essence, the vehicle
relies on its ability to extract useful navigation
information from the data returned by its sensors.
The SLAM algorithm has recently seen a consid-
erable amount of interest from the mobile robotics
community as a tool to enable fully autonomous
navigation (Castellanos et al. 1999)(Dissanayake
et al. 2001). The prospect of deploying a robotic
vehicle that can build a map of its environment
while simultaneously using that map to localise
itself promises to allow these vehicles to operate
autonomously for long periods of time in unknown
environments. Much of this work has focused on
the use of stochastic estimation techniques to build

and maintain estimates of vehicle and map fea-
ture locations. In particular, the Extended Kalman
Filter (EKF) has been proposed as a mechanism
by which the information gathered by the vehicle
can be consistently fused to yield bounded esti-
mates of vehicle and landmark locations in a re-
cursive fashion (Dissanayake et al. 2001)(Leonard
and Durrant-Whyte 1991). Recent work has con-
centrated on the development of efficient meth-
ods for implementing the algorithm using relative
maps (Csorba 1997)(Newman 1999) and submaps
(Leonard and Feder 1999) (Williams 2001).

While the Kalman Filter approach to the SLAM
problem has received considerable interest, alter-
native philosophies also appear in the literature. A
number of research teams have tackled the problem
of map building and localisation using batch esti-
mation techniques (Lu and Milios 1997) (Gutmann
and Konolige 2000) (Thrun et al. 1998). Still other
approaches to the problem of map building and lo-
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calisation have done away with the rigorous math-
ematical models of the vehicle and sensing prop-
erties and have relied instead on more qualita-
tive knowledge of the nature of the environment
(Brooks 1986)(Kuipers and Byun 1991)(Levitt and
Lawton 1990). While all of these alternative ap-
proaches to the problem have their own particular
strengths, this paper will be concerned primarily
with a recursive, on-line approach to the problem
and will rely on the EKF as the primary means of
simultaneously building a map while localising the
vehicle.

This paper presents results of deployment of
the SLAM algorithm undertaken at the Australian
Centre for Field Robotics in a variety of fielded
applications. Section 2 introduces the basics of
the SLAM algorithm. Section 3 presents results
of the application of the SLAM algorithm in an
indoor, office environment, operating in an outdoor
environment on a land vehicle and on a submersible
vehicle in an ocean environment. Finally, Section
4 summarises the paper and provides concluding
remarks.

2. THE ESTIMATION PROCESS

The localisation and map building process con-
sists of generating the best estimate for the system
states given the information available to the sys-
tem. This can be accomplished using a recursive,
three-stage procedure comprising prediction, obser-
vation and update steps known as the Extended
Kalman Filter (EKF) (Dissanayake et al. 2001).
The Kalman filter is a recursive, least squares es-
timator and produces at time i a minimum mean-
squared error estimate x̂(i |j ) of the state x(i ) given
a sequence of observations up to time j , Zj =
{ z(1)...z(j )} (Gelb 1996)(Maybeck 1982)

x̂(i |j ) = E [x(i )|Zj ] (1)

For the Simultaneous Localisation and Mapping
algorithm, the EKF is used to estimate the pose
of the vehicle x̂+

v (k) along with the positions of
the nf observed features x̂+

i (k), i = 1...nf . The
augmented state estimate consists of the current
vehicle state estimates as well as those associated
with the observed features
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�

����

x̂+
v (k)

x̂+
1 (k)
...

x̂+
nf (k)

�

����
(2)

The covariance matrix for this state estimate is
defined through

P+ (k) = E [(x(k) � x̂+ (k))(x(k) � x̂+ (k))T |Zk ].
(3)

This defines the mean squared error and error
correlations in each of the state estimates. For the

case of the SLAM filter, the covariance matrix takes
on the following form using P+

vv (k) to represent
the vehicle covariances, P+

mm (k) to represent the
map covariances and P+

vm (k) to represent the cross-
covariance between the vehicle and the map.
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2.1 Prediction

The prediction stage of the filter uses a model
of the motion of the vehicle, f(x̂+

v (k � 1), u(k)), to
generate an estimate of the vehicle position, x̂−

v (k),
at instant k given the information available to
instant k � 1. The landmarks are generally assumed
to be stationary. Together, these two models result
in the propagation of the augmented state matrix
during the prediction cycle of the filter.
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The covariance matrix must also be propagated
through the vehicle model as part of the predic-
tion. The Extended Kalman Filter linearises the
propagation of uncertainty about the current state
estimate x̂+ (k � 1) using the the Jacobian � x f(k)
of f evaluated at x̂+ (k � 1) as

P−(k) = � x f(k)P+ (k � 1)� x fT (k) + Q(k). (6)

For the SLAM algorithm, this step in the filter
can be simplified because of the assumption that
the feature states are stationary. This allows the
complexity of computing the predicted covariance
to be reduced by requiring that only the variances
associated with the vehicle and the cross covariance
terms between the vehicle and the map are updated
during the prediction step.

2.2 Observation

The fusion of the observation into the state
estimate is accomplished by first calculating a
predicted observation, ẑ−(k), using the observation
model, h as

ẑ−(k) = h(x̂−(k)) (7)
When observations are received from the vehicle’s
on-board sensors they must be associated with par-
ticular features in the environment. The difference
between the actual observation, z(k), received from
the system’s sensors and the predicted observation,
ẑ−(k), is termed the innovation � (k),

� (k) = z(k) � ẑ−(k) (8)

The innovation covariance, S(k), is computed
from the current state covariance estimate, P−(k),



the Jacobian of the observation model, � x h(k),
and the covariance of the observation model R(k).

S(k) = � x h(k)P−(k)� x hT (k) + R(k) (9)

The innovations and their associated covariances
can be used to validate measurements before they
are incorporated into the filtered estimates. The
calculation of the innovation covariance can be
simplified by noting that each observation is only
a function of the feature being observed.

2.3 Update

Once the observation has been associated with a
particular feature in the map, the state estimate
can be updated using the optimal gain matrix
W(k). This gain matrix provides a weighted sum
of the prediction and observation and is computed
using the innovation covariance, S(k) and the pre-
dicted state covariance, P−(k). The weighting fac-
tor is proportional to P−(k) and inversely pro-
portional to the innovation covariance (Smith et
al. 1990). This is used to compute the state up-
date x̂+ (k) as well as the updated state covariance
P+ (k).

x̂+ (k) = x̂−(k) + W(k)� (k) (10)

P+ (k) = P−(k) � W(k)S(k)WT (k) (11)

where

W(k) = P−(k)� x hT (k)S−1(k) (12)

2.4 Feature Initialisation

When a new feature is observed its estimate
must be properly initialised and added to the
state vector. Given a current state estimate, x̂−(k),
comprised of the vehicle state, x̂−

v (k), and the map
states, x̂−

m (k), a relative observation between the
vehicle and the new feature, z(k), and a feature
initialisation model, gi (•, •), that maps the current
vehicle state estimate and observation to a new
feature estimate, the initial estimate of the feature
state is

x̂+
i (k) = gi (x̂−

v (k), z(k)). (13)

These new state estimates are then appended to
the state vector as new map feature elements.

The covariances of the new feature estimates
must also be properly initialised since the initial
estimate depends on the current vehicle estimate
and is therefore correlated with the rest of the
vehicle and other map state estimates. Ignoring the
correlation between the new state estimates and
the remainder of the map can lead to inconsistency
in the filtering process (Csorba 1997). The SLAM

covariance matrix is first augmented with the ob-
servation covariance and the cross-covariance terms
between the existing state elements and the new
state estimates are computed.

P∗−(k) =
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P−T
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The final covariance is computed by projecting the
augmented covariance matrix through the Jacobian
� x g(k) of the initialisation function, gi , with re-
spect to the augmented states,

P+ (k) = � x g(k)P∗−(k)� x gT (k) (15)

Proper initialisation of the feature estimates is
necessary to maintain their consistency and to
generate the correct cross-covariances between the
feature and vehicle estimates.

2.5 Computational Complexity

One significant obstacle on the road to the im-
plementation and deployment of large scale SLAM
algorithms is the computational effort required to
maintain the correlation information between fea-
tures in the map and between the features and
the vehicle. Performing the update of the covari-
ance matrix is of O(n3) for a straightforward im-
plementation of the Kalman Filter. In the case
of the SLAM algorithm, this complexity can be
reduced to O(n2) given the sparse nature of typ-
ical observations. Even so, this implies that the
computational effort will grow with the square of
the number of features maintained in the map. For
maps containing more than a few tens of features,
this computational burden will quickly make the
update intractable - especially if the observation
rates are high. An effective map-management tech-
nique is therefore required in order to help manage
this complexity.

A number of potential methods by which the
growth of the computational burden imposed by
the covariance update can be regulated have
been described in the literature. Some approaches
rely on reducing the number of features incorpo-
rated into the map (Davison 1998)(Dissanayake
et al. 2000) while others use a suboptimal up-
date step (Uhlmann et al. 1997)(Guivant et al.
2000). Still other approaches have examined the
effect of changing the map representation on
the computational complexity of the update; us-
ing relative maps (Csorba and Durrant-Whyte
1997)(Newman 1999) or submaps (Chong and
Kleeman 1998)(Leonard and Feder 1999)(Williams
2001) recent work has shown that the algorithm is
tractable for larger maps.



Fig. 1. One of the indoor vehicles used for testing
the SLAM algorithm. This vehicle is equipped
with a scanning laser range finder, sonar and
wireless communications.

Fig. 2. A map of an indoor, office environment
generated using a scanning laser range finder.

3. FIELD DEPLOYMENT

The goal of any Field Robotics project should
ultimately be the deployment of algorithms using
vehicles operating in natural environments. Recent
work undertaken at the Australian Centre for Field
Robotics has shown that the SLAM techniques
can be adopted in real world settings. This section
provides a brief summary of results of these de-
ployments and provides references to more detailed
descriptions of some of the systems.

Fig. 3. The utility vehicle, equipped with laser
range finder and wheel encoders, is driven in a
park. The trunks of trees observed by the laser
are tracked as features in the SLAM map.

Fig. 4. The path of the vehicle and the SLAM map
of features (image courtesy of Jose Guivant).

3.1 Indoor SLAM

Indoor mobile robotic platforms, an example
of which is shown in Figure 1, provide an ideal
means with which to test novel navigation algo-
rithms prior to their deployment in field environ-
ments. The ACFR has recently established an in-
door robotics laboratory to facilitate this work.
Figure 2 shows an example of results of the ap-
plication of the SLAM algorithm in an indoor en-
vironment. The SLAM map consists of estimates of
the position of retro-reflective strips that have been
mounted in an office environment. Observations of
the positions of these strips are used to correct
errors in odometry. The laser returns are stored
relative to the vehicle location estimates and plot-
ted in this view, yielding the walls apparent in the
map. Research into autonomous exploration as well
as multiple vehicle SLAM is currently underway.

3.2 Land vehicle SLAM

Experiments have been conducted using a land
vehicle operating in a park-like setting (Guivant et



al. 2000). These experimental runs are performed in
a totally unstructured environment. Figure 3 shows
the experimental car in the testing environment.
The vehicle is equipped with a scanning laser range
finder and wheel encoders. The laser scans are pro-
cessed to extract circular cross-sections returned
from the trunks of trees in the park. The position
of the trees, together with trunk diameter, are
estimated as part of the SLAM algorithm. The
estimate of trunk diameter is used to facilitate the
data association process.

In this case the car is running on a grassy surface.
Modelling errors are expected due to wheel slip and
the 3-D nature of the environment. In spite of these
modelling errors, the SLAM algorithm is able to
accurately track the position of the vehicle as it
travels through the park. The tracking accuracy
has been verified against a GPS/INS navigation
system (Guivant et al. 2000). Another objective
of these tests was to determine the convergence
characteristics of the algorithm when running in
large areas for long periods of time. In this case
the vehicle was running for more than 20 minutes
and the resulting map and vehicle path are shown
in Figure 4. The point features represent the trunks
of the trees seen by the vehicle.

3.3 Subsea SLAM

The SLAM algorithms have also been demon-
strated in an underwater environment off the coast
of Sydney, Australia (Williams et al. 2001). The
submersible was deployed in a natural inlet with
a number of sonar targets positioned in a straight
line at intervals of 10m. The vehicle controls were
set to maintain a constant heading and altitude
during the run. Once the vehicle had reached the
end of its tether (approximately 50m) it was turned
around and returned along the line of targets. The
slope of the inlet in which the vehicle was deployed
meant that the depth of the vehicle varied between
approximately 1m and 5m over the course of the
run.

Figure 6 shows a plot of the final map obtained
by the SLAM algorithm. The position of the sonar
targets are clearly visible. The absolute location
of all the potential point targets identified based
on the sonar principal returns are also shown in
this map. These locations were computed using
the estimated vehicle location at the instant of the
corresponding sonar return. The returns seen near
the top and bottom of the map are from the reef
walls. As can be seen, large clusters of returns have
been successfully identified as landmarks.

Fig. 5. Oberon at Sea
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Fig. 6. The path of the vehicle computed using the
beacon returns. In addition to the identified
target returns, strong energy returns from
the reef walls and the sea floor can also be
extracted from the sonar pings.

4. CONCLUSIONS

This paper has presented recent field deployment
of the Simultaneous Localisation and Mapping al-
gorithm undertaken at the Australian Centre for
Field Robotics. The approach has been shown to
perform well in a number of environments. The
algorithms have been tested in indoor, office en-
vironments, on land vehicles driving in a park-
like setting and on a submersible vehicle operating
in a natural environment off the coast of Sydney,
Australia.

Work currently underway is concentrating on
the deployment of the algorithm in additional field
applications, such as using airborne vehicles. This
work is complicated by the complexity of imple-
menting the algorithm in a true three dimensional
space on a platform moving at high speeds. Mul-
tiple vehicle SLAM as well as incorporating locali-
sation into the task of exploration are also areas of
active research.
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