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Abstract: This paper considers the design and evaluation of stabilising controllers for a
twelve degree of freedom biped robot using linear quadratic optimal control techniques
and reduced order observers. The controllers are designed using approximate planar
dynamical models for the sagittal and lateral planes. Experiments were carried out to test
the control system when the biped robot was in the double support phase and during
locomotion. Although the control system is based on single support models, the
experimental results have shown that the robot successfully kept its given posture.
Copyright © 2002 IFAC
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1. INTRODUCTION

In recent years, there has been an increased interest
in bipedal robots. In particular, the creation of a
European Network on Climbing and Walking Robots
(CLAWAR) has provided a focus for worldwide
research on mobile robotics. Experimental prototypes
have been developed throughout the world and at
present, the most remarkable results have been
achieved by (Hirai, et al., 1998). Several researchers
have investigated stabilisation strategies based on
modern control theory and linearized (planar)
models. (Mita, et al., 1984) used linear optimal
regulator theory; (Eldukhri, 1996) and (Medrano-
Cerda and Eldukhri, 1997) considered linear optimal
control implemented via reduced order observers.
(Hemami and Wyman, 1979) and (Golliday and
Hemami, 1976) used pole placement controllers in
their simulation studies; decoupling control was
studied by (Raibert, 1986) and (Golliday and
Hemami, 1977. (Miura and Shimoyama, 1984) used
linear state feedback to stabilise motions around
carefully pre-selected trajectories. (Channon, et al.,
1992) used local PD joint controllers with gravity
compensation and gain scheduling; slow motion
stabilisation was achieved by controlling the position
of the centre of gravity. (Inaba, et al., 1995) followed
a similar approach for static balancing using vision
feedback to control the position of the centre of
gravity. For high speed locomotion, the problem of
maintaining balance involves controlling the position

of the zero moment point (ZMP) (Vukobratovic, et
al., 1990). For a biped with a trunk the ZMP method
is outlined in (Takanishi, et al., 1985, 1990).
Refinements and variations to the basic ZMP
approach are considered in (Li, et al., 1993),
(Yamaguchi, et al., 1999). The humanoid robot
developed by (Hirai, et al., 1998) is also based on the
ZMP method. The authors claim that their stabilising
controller is similar to that of humans, yet when
walking or standing on flat surfaces the angles in the
sagittal plane are rather large. This is particularly
noticeable in the knee joints. Experimental results in
(Eldukhri, 1996) and (Medrano-Cerda and Eldukhri,
1997) showed that during the single support phase
the leg joints could be straightened and while
standing on both feet small angles could be
maintained to reduce power consumption. The
experimental tests were carried out using a prototype
with eight degrees of freedom, seven in the sagittal
plane and one in the lateral plane (trunk). This joint
distribution limited the robot locomotion to the
sagittal plane. Four additional degrees of freedom
were needed for locomotion in the lateral plane
(ankles and hips).

The work in this paper is an extension of our
previous research to include multiple degrees of
freedom in both sagittal and lateral planes. To
simplify the design, independent stabilising
controllers are developed for the sagittal and lateral
planes. A brief description of the new biped robot is

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

mailto:g.a.medrano-cerda@eee.salford.ac.uk
mailto:davut_akdas@hotmail.com


given in section 2. The techniques used for
derivation of mathematical models and the designs of
the control systems are presented in section 3.
Robustness and disturbance transmission properties
of the control systems are assessed in section 4.
Conclusions are given in section 5.

2. SYSTEM DESCRIPTION

The biped robot has twelve degrees of freedom, five
in the lateral plane and seven in the sagittal plane:
2DOF ankle, 2DOF hip, 2DOF trunk and 1DOF knee
joints. Figure 2.1 shows joints distribution. The
joints are driven by permanent magnet DC motors
and low backlash gearboxes. Potentiometers measure
relative joint angles. Force sensors underneath each
foot are used to measure ground reaction forces in
the sagittal and lateral planes. The robot weights
17.8kg and is 1.75m tall. The foot size is 0.18m wide
by 0.3m long. The biped is controlled by 486DX20
PC. Smoothing and anti-aliasing filters (at 15 Hz and
22 Hz respectively) are used for signal conditioning.

Fig. 2.1 Lateral and sagittal joints of the biped robot

3. MODELLING AND CONTROL SYSTEM
DESIGN

Symbolic mathematical models of the biped are
obtained for the sagittal and lateral planes separately.
This reduces the complexity of the symbolic model.
It is assumed that the robot is in the single support
phase (open chain structure), the support foot is in
firm contact with the ground and that slippage does
not occur. The ankle joint of the swing leg has a
small contribution to the dynamic equations.
Therefore this joint is neglected in the derivation of
mathematical model. However, the mass of the
swing-leg foot is added to the mass of the
corresponding knee link. Joint viscous friction and
motor inductance are neglected. Stiction and
backlash in the gearboxes are not included in the
models. Different modelling formulations are
available: Lagrangian dynamics (Lewis, et al., 1993),
Newton-Euler equations (Vukobratovic, et al., 1990)
and Kane’s equations of motion (Amirouche 1992).
The reduced model for the sagittal plane has six
links: lower and upper support leg, hip, trunk, upper
swing leg and lower swing leg+foot. To keep the
swing-leg foot parallel to the ground a separate foot

controller is used. The non-linear model takes the
form

sssss fZYXJ =+++ )()()( 2 θθθθθθ (1)

Here θ , θ  and θ  denote absolute joint angles,
angular velocities and accelerations, respectively.
Motor voltages and disturbance torques are included
in sf . Linearizing around the upright position and
using a 10ms sampling time interval, we obtain a
linear discrete time model in state space form

)()()()1( kBkuBkxAkx s
dist
ssssss τ++=+ (2)

)()(1 kxCkx sss = (3)

[ ]TT
s

T
ss xxx 21=

Here sA , sB , dist
sB  and sC  are the state space

matrices in the sagittal plane. The control signal is
denoted by su , 1sx  represents relative angular
displacements, 2sx  relative angular velocities and sτ
denotes disturbance torques. The mathematical
model for the lateral plane is derived in the same way
as for the sagittal plane, but only with four links:
support leg, hip, trunk and swing leg+foot. The non-
linear model is linearized about the vertical except
the hip link, which is linearized about the horizontal.
The equations for the lateral plane are similar to (1)-
(3).

3.1 Observer design.

To estimate relative angular velocities a reduced
order observer is designed for each plane. Both
models are observable and this ensures that state
observers with arbitrarily chosen dynamics can be
designed. The structure of the observer is given
below for the sagittal plane
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)()()(ˆ 12 kxKkzkx ssss += (4)

The torque disturbances are excluded in the observer
since they are not measured or known accurately.
Once the observer dynamics sF  are chosen, the
remaining observer parameters are computed from
the following relations
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Selecting 669.0 ×= IFs  ( 6666 ×=×I  identity matrix)
reduces estimation errors quickly without degrading
stability margins too much. The observer for the
lateral plane has the same structure as the one given
above but 449.0 ×= IFl .



3.2 Control system design.

The stabilising control systems incorporate state
feedback (reduced order observers estimate the
relative angular velocities), integral action to reduce
the steady state errors and a feedforward term to
speed up tracking of reference signals. The controller
structure for the sagittal plane is

)(11)(2)( 1 kxLkxLku ssasss −−=
)()(ˆ12                                 2 krLffkxL ssss +− (5)

where sL11  is the gain associated with the relative
angles, sL12  is for the relative angular velocities and

sL2  is for the integral actions. The feed forward
gain sLff  is set equal to sL11 . The feed forward
term is particularly useful when small integral gains
are used. If the integrators have large gains it is
better to set ffsL equal to zero. The state space
equation of the integral action is
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Here asx  is the state vector for the integrators and

sr  is the reference signal, which is set to zero in the
Linear Quadratic Regulator design. The design of the
optimal state feedback matrix starts with the
specification of a quadratic performance index
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Where dsQ  and dsR  are chosen as diagonal matrices
with positive entries. The constraint equation is
(ignoring torque disturbances)
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The selection of dsQ and dsR  was investigated in
Matlab simulations and during experiments. The
aims were to achieve fast response with little or no
overshoot and to maintain the control signal within
the power supplies limitations. Chosen values for

dsQ and dsR  are

[ ]susvspds QQQQ = (9)
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Here spQ  is the matrix penalising angular positions,

svQ  is for the velocities and suQ  is for the integral

Fig. 3.1 Observer-based control system for the
sagittal plane

actions. In selecting spQ  it was desirable for them to
be as low as possible to prevent demands for large
control signals. Low spQ  values increase relative
stability and reduce sensitivity to noise. On the other
hand, to track reference signals with small errors and
quickly attenuate disturbances, relatively high values
of spQ  are needed. Therefore, a compromise was
made between relative stability margins and tracking
of reference signals. To reduce the magnitude of the
control signals, the velocity penalty matrix, svQ , is
set to zero. In the sagittal plane, gains for integral
actions were kept to minimum. High integral gains
tend to cause oscillations in the system, mainly due
to the presence of backlash. The control system for
the lateral plane has the same structure as the one for
the sagittal plane. The only difference is that in the
lateral plane there are four links instead of six. The
matrices dlQ  and dlR  for the performance index are

[ ]lulvlpdl QQQQ =

[ ]4444 105105105105 ××××= diagQlp
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[ ]2123 102.1101102.1101 −−−− ××××= diagQlu
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Due to high static friction of the worm gearboxes
used for the lateral hip joints, the integral penalty
matrix luQ  is given higher values than those in the
sagittal plane.

4. RELATIVE STABILITY AND PERFORMANCE

This section investigates the robustness of the control
system through the analysis of Nyquist and singular
value plots. The state space representation of the
overall controller can be written as follows (sub-
index s is used for the sagittal plane and l for the
lateral plane):
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Defining
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Then equations (2) and (5) can be written as
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Here, sn  represents quantization measurement noise.
The corresponding block diagram is shown in Figure
4.1, where sd  represents contributions from torque
disturbances. The pre-filter ( )zPs  can be used to limit
angular velocities, to reduce large sudden demands in
the control signals or to carry out smooth transitions
between different reference set-points. The design of
the control system does not include the effects of the
smoothing filters (at 15 Hz) and the anti-aliasing
filters (at 22 Hz). However, their effects on the
robustness of the control system are investigated
through Nyquist plots of the determinant of return
difference matrices. The return difference equations
at the plant input and output are given below for
sagittal plane

( ) ( ) ( )zGzGIzF cssos −=
( ) ( ) ( )zGzGIzF scsis −= (13)

The control system shown in Figure 4.1 can be
expressed as

( ) ( ) ( ) ( ) ( ) ( ) ( )znzTzyzGzdzSzy sosrsyssosms ++=
(14)

( ) ( ) ( ) ( ) ( ) ( )( )znzdzTzyzGzu ssisrsuss ++= (15)

( ) ( ) 1−= zFzS osos

( ) ( ) 1−= zFzS isis

( ) ( ) ( ) ( ) ( )zPzNzGzSzG sssosys =

( ) ( ) ( ) ( )zGzGzSzT cssosos =
( ) ( ) ( ) ( )zPzNzSzG ssisus =

( ) ( ) ( )zGzSzT csisis =

The above analysis can be carried out for the plant
together with the smoothing and anti-aliasing filters,
i.e. replace ( )zGs  by ( )zG fs  after appending all the
relevant filters dynamics. For the equations in the
lateral plane, the sub-index s is replaced by l.

Figure 4.2 shows the Nyquist plots of )det( osF
and )det( olF  around the critical point (note
that )det()det( isos FF = ). For the sagittal plane, the

Fig. 4.1 Control system block diagram (drawn for the
sagittal plane)

origin is encircled four times in an anticlockwise
direction. For the lateral plane, three encirclements of
the origin occur. We point out that the number of
encirclements is equal to the number of unstable
open loop eigenvalues of each model (sagittal or
lateral plane) provided that the controller (10) has no
eigenvalues outside the unit circle. The Nyquist plots
clearly indicate that the anti-aliasing and smoothing
filters have reduced the relative stability of the
control system.

Figures 4.3 - 4.6 show the singular value plots of the
transfer matrices given by equations (14)-(15) with
and without the filters. Again, the analysis with
nominal design has better gain characteristics. Figure
4.3 shows the transmission from output disturbance
to the plant output. In the sagittal plane, the plot
shows that up to 0.8 Hz any output disturbances are
attenuated by the control system. Above 0.8 Hz
disturbances can be amplified, especially around 8
Hz. Also, the analysis with the filters shows
degradation in performance. In the lateral plane, the
system is susceptible to disturbances above 0.8 Hz.
Figure 4.4 shows the transmission of reference
signals at the plant output (cut-off frequencies about
1 Hz and 1.5 Hz). Both analyses are shown without
pre-filters. Step reference signals can produce
angular velocities in excess of 1rad/s. For such
speeds, the linearized model will be less accurate
than the non-linear model (1) due to terms involving
squared angular velocities. Therefore, in the
experimental evaluation we have used unity gain pre-
filters (about 0.16 Hz bandwidth) to keep angular
velocities smaller than 1rad/s. Noise transmission
characteristics at the plant output are shown in Figure
4.5. In the sagittal plane, measurement noise begins
to be attenuated above 8 Hz. In the lateral plane the
performance is slightly better, noise attenuation
occurs above 4 Hz. Sources of noise are due to
quantization errors of about ± 0.5mrad. Contribution
of disturbances and noise to the control effort are
presented in Figure 4.6. The experimental data
gathered from joint positions indicated that
quantization is the main source for noise, and its
amplitude is ± 0.5mrad. Maximum amplification in
the sagittal plane is 56dB (Figure 4.6). This may
produce a control effort around 0.31V. This voltage
level is not large enough to drive any joints, since a
voltage of around 0.5V is needed to overcome
stiction. Therefore, the control efforts are not
significantly contaminated by quantization noise.



5. CONCLUSIONS

In this paper, we have presented an approach for
stabilisation of a 12 DOF biped robot using LQR
theory and reduced order observers. The theoretical
analysis indicates that the design technique is robust
against disturbances or noise. The control systems
were designed using single support models.
Experimental tests have shown that the controllers
worked well during both single and double support
phases. The control system was capable of
maintaining joint positions close to given reference
values under small torque disturbances. For large
torque disturbances the biped did not remain
standing. This failure was due to the lack of
information about ground reaction forces. It is clear
that ground reaction force measurements are
essential to maintain equilibrium in realistic
situations.
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Fig. 4.2 Nyquist plots of )det( osF  and )det( olF
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